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ABSTRACT

The f-plane linear shallow-water equations support coastal Kelvin waves. These waves propagate along the
coast and have zero velocity normal to the coast. It is shown that the balance equations also support coastal
Kelvin waves, but these waves differ depending upon the boundary conditions imposed. Three different boundary
conditions and resulting Kelvin wave approximations are examined. It is shown that one set of boundary
conditions gives balance-model Kelvin waves that are closer to those of the shallow-water equations than the
other two boundary conditions.

1. Introduction

The balance equations for a continuously stratified,
rotating fluid were first systematically derived by Lorenz
(1960). He showed that they are truncations of the prim-
itive equation vorticity and divergence equations
through two orders in the usual midlatitude Rossby
number scaling and that they have a global energy con-
servation. Gent and McWilliams (1983) developed con-
sistent boundary conditions for this model in a bounded
domain. Allen (1991) proposed an extension to this
model that can be written easily as a momentum equa-
tion and has a potential vorticity conservation law in
addition to energy conservation. He also formulated a
different set of boundary conditions than those in Gent
and McWilliams (1983). Holm (1996) derived this ex-
tended balance model from an asymptotic expansion of
Hamilton’s principle, demonstrated its Hamiltonian
structure, and proposed a companion, but slightly dif-
ferent, balance model in isopycnal coordinates.

To clarify the issue of appropriate boundary condi-
tions for the balance equations, we obtain analytical
solutions for midlatitude Kelvin waves in the balance
equation approximation and compare them to the linear
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shallow-water model Kelvin wave solution. We find that
the Kelvin waves resulting from Allen’s (1991) bound-
ary conditions, which were also utilized in numerical
experiments by Allen et al. (1990), are a better approx-
imation to the shallow-water Kelvin waves than those
obtained with the boundary conditions of Gent and
McWilliams (1983), which were also employed by
Holm (1996). The shallow-water Kelvin wave solution
is given in section 2, and the various balance equation
approximations to the Kelvin wave are given in section
3. The conclusions are briefly stated in section 4.

2. Linear shallow-water equations

We consider the linearized shallow-water equations
in a fluid of average depth H and a free surface elevation
of h. The equations are

u 1 f k 3 u 1 g=h 5 0, (2.1)t

h 1 H= ·u 5 0, (2.2)t

where u is the horizontal velocity, k is a unit vertical
vector, f is the constant Coriolis frequency, g is the
gravitational constant, t is time, and subscript t denotes
partial differentiation. These equations imply conser-
vation of a linearized potential vorticity, in the form

[Hk · = 3 u 2 fh]t 5 0. (2.3)

The energy equation is

Et 1 g= · (hu) 5 0, (2.4a)
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where

1
2E 5 [u ·u 1 (g /H)h ]. (2.4b)

2

Thus, in bounded domains the boundary condition of
no normal flow at the domain boundary ensures global
energy conservation, that is, conservation of the area
integral of E.

We now consider an eastern ocean boundary located
at x 5 0. The f-plane equations support coastal Kelvin
waves that travel northward or southward in the North-
ern and Southern Hemispheres, respectively. The North-
ern Hemisphere Kelvin wave solution is given by

u 5 0, (2.5a)

(y , h) 5 (c, H) exp[ fx/c 1 i(ly 2 vt)] (2.5b,c)

v 5 cl, (2.6)

where c 5 (gH)1/2 is the gravity wave speed and where
the dispersion relation (2.6) implies that the waves are
nondispersive. The zonal decay scale of the waves away
from the boundary is equal to c/f.

3. Linear balance equations

The linear balance equations are an approximation to
the shallow-water equations that retain the time deriv-
ative of the rotational component of the velocity only.
They take the form

uRt 1 f k 3 u 1 g=h 5 0, (3.1)

where

u 5 uR 1 uD 5 k 3 =c 1 =x, (3.2)

in addition to the exact linear height equation (2.2).
Equations for the vertical component of vorticity and
the horizontal divergence are typically considered in
place of the momentum equations (3.1). In terms of the
variables (c, x, h), these are

2 2¹ c 1 f ¹ x 5 0, (3.3a)t

2 2f ¹ c 5 g¹ h, (3.3b)

while (2.2) is

ht 1 H¹2x 5 0. (3.4)

No time derivative appears in the divergence equation
(3.3b) and this filters out high-frequency gravity–inertial
waves. A relevant point, evident from the governing
equations (3.3a,b) and (3.4), is that arbitrary solutions
of ¹2c 5 0 and ¹2x 5 0 may be added to c and x,
respectively, without affecting the satisfaction of
(3.3a,b) and (3.4). Proper boundary conditions are nec-
essary to ensure appropriate solutions for c and x.

The linear balance equations conserve a linearized
potential vorticity,

[Hk · = 3 uR 2 fh]t 5 0, (3.5)

which, since k · = 3 u 5 k · = 3 uR, is identical to the
shallow-water equation (2.3). The energy equation is

ERt 1 g= · (hu) 1 = · (xuRt) 5 0, (3.6a)

where

1
2E 5 [u ·u 1 (g /H)h ]. (3.6b)R R R2

In bounded domains, the area integral of ER will be
conserved if, at the boundary, there is no normal flow

u · n 5 0, (3.7)

and if

xu ·n ds 5 0, (3.8)R Rt
C

where n is the outward pointing unit vector normal to
the boundary, and the integral in (3.8) is around the
boundary contour C. Thus, global conservation of the
energy ER cannot be assured merely by the boundary
condition of no normal flow at the domain boundary
and a second boundary condition is needed. This is
standard for the balance equations because the speci-
fication of unique solutions for both c and x requires
an extra boundary condition in addition to (3.7) (Gent
and McWilliams 1983; Allen et al. 1990).

Global energy conservation in Eq. (3.6) can be as-
sured by at least three different choices of boundary
conditions. They are

(A) Allen (1991)

u · n 5 0, (3.9a)
(g=h 1 f k 3 uR) · n 5 0, (3.9b)

(B) Gent and McWilliams (1983) and Holm (1996)

u · n 5 0, uR · n 5 0, (3.10a,b)

(which implies uD · n 5 0), and

(C)

u · n 5 0, x 5 0. (3.11a,b)

Note that the Allen (1991) conditions (A) ensure con-
servation of energy ER since (3.1) and (3.9b) imply that,
on the boundary,

uRt · n 1 f (k 3 =x) · n 5 0, (3.12)

so that (3.8) is satisfied because the integrand is a perfect
differential.

With boundary conditions (A), the Kelvin wave so-
lution at an eastern ocean boundary is

u 5 0, (3.13a)

(y , h) 5 ( f/k, H) exp[kx 1 i(ly 2 vt)], (3.13b,c)

v 5 f l/k, (3.14)

where
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FIG. 1. Dispersion relations for the linear shallow-water equations
SWE (2.6) and for the linear balance equations with boundary con-
ditions A (3.14), B (3.18), and C (3.23b).

k 5 (l2 1 f 2/c2)1/2, (3.15)

and where, for definiteness in what follows, we assume
l $ 0. In comparison to the shallow-water equation
(2.5), this Kelvin wave solution also has zero zonal
velocity and a single decay scale away from the coast
equal to 1/k. The dispersion relation (3.14) is plotted in
Fig. 1 along with the shallow-water relation (2.6). In
the small wavenumber low-frequency limit, the A dis-
persion relation (3.14) gives

1
2 2 2v 5 cl 1 2 c l / f 1 · · · for l K f /c, (3.16)1 22

which is second-order accurate in this important limit.
Likewise, the error in the decay scale 1/k and in the
amplitude of y is small O[(cl/f) 2] for l K f/c. As shown
in Fig. 1, v/f ; 1 for l k f/c so the frequency is finite
as the meridional wavenumber becomes very large.

Boundary conditions B impose that the normal com-
ponents of both the rotational and divergent velocities
are zero. They are discussed in Gent and McWilliams
(1983), where they are labeled choice 1, and by Holm
(1996) in his derivation of the balance equations based
on Hamiltonian dynamics. The choice 2 boundary con-
ditions discussed in Gent and McWilliams (1983) are
equivalent to choice 1 in this linear f-plane model. For
a coastal Kelvin wave, boundary conditions B imply
that the solution cannot be written purely in terms of
the spatial function exp(kx). Additional components
must be added to c and x that satisfy ¹2c 5 0 and ¹2x
5 0, respectively, and so have an exp(lx) spatial de-
pendence. The eastern boundary Kelvin wave solution
that satisfies boundary condition B is given by

2c vl
u 5 i exp[i(ly 2 vt)]

2f

3 [exp(kx) 2 exp(lx)], (3.17a)
2c

y 5 exp[i(ly 2 vt)]
2f

3 [( fk 2 vl) exp(kx) 1 vl exp(lx)], (3.17b)

h 5 H exp[kx 1 i(ly 2 vt)], (3.17c)

v 5 f l/(k 2 l). (3.18)

The dispersion relation in (3.18) is plotted in Fig. 1 and
has two undesirable features compared to the dispersion
relation (3.14) for boundary conditions A. The first is
that in the small wavenumber, low-frequency limit the
frequency is only first-order accurate, that is,

v 5 cl(1 1 cl/f 1 · · · ) for l K f/c, (3.19)

and the second is that the frequency becomes very large
as the meridional wavenumber gets large; that is, v ;
2(cl)2/f for l k f/c. In addition, compared to the shallow-
water solution (2.5), this solution has zero zonal velocity
only at the boundary and has two decay scales away
from the coast equal to 1/k and 1/l. In the small merid-
ional wavenumber limit l K f/c, however, the relative
magnitude of the component of y with decay scale 1/l
is small O[(cl/f)2], as is the magnitude of the nonzero
zonal velocity. It is clear, nevertheless, that in the limit
l K f/c, that is, for v K f, the coastal Kelvin wave in
the balance equations with boundary conditions A is a
better approximation to the shallow-water Kelvin wave
than that with boundary conditions B.

Boundary conditions C impose that the normal com-
ponent of velocity and the divergent potential x are zero
on the boundary. The eastern boundary Kelvin wave
solution that satisfies boundary conditions C is given by

2ic
u 5 (vk 2 f l) exp[i(ly 2 vt)]

2f

3 [exp(kx) 2 exp(lx)], (3.20a)
2c

y 5 exp[i(ly 2 vt)]
2f

3 [( fk 2 vl) exp(kx)

1 (vk 2 f l) exp(lx)], (3.20b)

h 5 H exp[kx 1 i(ly 2 vt)], (3.20c)
2v( f 1 v) 5 f l/(k 2 l). (3.21)

The dispersion relation (3.21) has two roots

1
1/2v 5 2 f [1 6 (1 1 4l/(k 2 l)) ], (3.22)6 2

where, for l K f /c,
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v 52 f (1 1 cl/ f 1 · · ·), (3.23a)1

1
2 2 2v 5 cl 1 1 c l / f 1 · · · . (3.23b)2 1 22

Thus, the solution with v2 corresponds closely to a
Kelvin wave while the solution with v1 is a spurious
mode of oscillation, which is an unfavorable aspect of
boundary conditions C. The dispersion relation (3.23b)
for v2 is plotted in Fig. 1. Compared to the shallow-
water solution (2.5), the v2 solution shares the disad-
vantages of the B boundary condition solution in having
the zonal velocity zero only at the boundary and having
two decay scales away from the boundary. However, in
the limit l K f/c, the nonzero zonal velocity in the v2

solution is small O[(cl/f)3] as is the relative magnitude
of the component of y with decay scale 1/l. Finally, note
that the frequency becomes large as the meridional
wavenumber gets large; that is, v2 ; 2cl for l k f/c.Ï

4. Conclusions

The midlatitude coastal Kelvin waves are well rep-
resented in linearized balance models for l K f/c, or
equivalently v K f, using the boundary conditions for-
mulated by Allen (1991) when he proposed the balance
equations based on momentum. The Kelvin waves are

not as well represented in this limit using other boundary
conditions including the choice 1 of Gent and Mc-
Williams (1983), which sets the normal components of
both the rotational and divergent velocities to zero.
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