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Natural variability in the width of the tropics  

Isla Simpson

National Center for Atmospheric Research

Roughly a decade ago, it was realized that in the 
 approximately 30 years since satellite records began 

the tropics, as measured by various climatological 
definitions, had been expanding, raising concern as to 
whether this was an externally forced trend arising from 
anthropogenic forcings such as increasing greenhouse 
gas concentrations (e.g., Seidel et al. 2008). While our 
theoretical expectations and numerical climate model 
simulations indeed predict that the tropics should expand 
as the planet warms (Frierson et al. 2007; Lu et al. 2007; 
Tao et al; 2016), it has now become acknowledged that 
natural, internal variability has likely played an important 
role in the expansion that has been observed over recent 
decades (Quan et al. 2014; Garfinkel et al. 2015; Mantsis 
et al. 2016; Amaya et al. 2017; Allen and Kovilakam 
2017). Over the observational record, the confounding 
influences of natural variability and external forcings 
make a quantitative assessment of the magnitude of 

forced trends extremely challenging, if not impossible. 
As we wait for our observational record to lengthen and 
forced trends to emerge (or not), we must maintain an 
appreciation of the influence of natural variability on 
what we have seen and what we may see in the future.

There are a number of ways in which to define the 
width of the tropics (Davis and Rosenlof 2012; Waugh 
et al. 2018; Davis et al. this issue) and a number of 
approaches (e.g., seasons, trend lengths) that could be 
used to characterize variability and change, all of which 
cannot be covered here. Readers, however, can refer to a 
number of studies that have used a variety of metrics and 
approaches to investigate natural variability in tropical 
width (Kang et al. 2013; Quan et al. 2014; Garfinkel et al. 
2015; Allen and Kovilakam 2017; Amaya et al. 2017; Quan 
et al, 2018). Here, natural variability in tropical width will 
be illustrated with three examples: the annual mean 
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width (i.e., difference between the Northern 
Hemisphere and Southern Hemisphere tropical 
edges); the latitude of the Northern Hemisphere 
edge during winter (December-January-February 
average (DJF)); and the latitude of the Southern 
Hemisphere edge during summer (DJF). The edge 
of the tropics will be defined here as the latitude 
of transition of near surface winds from easterly 
to westerly (e.g., Adam et al. 2018).  

Figure 1 illustrates the challenge that we face 
in isolating the forced response from natural 
variability and even in simply characterizing the 
variability over our observational record. Annual 
mean tropical width for a variety of reanalysis 
products is shown in Figure 1a. The two products 
that cover the entire 20th century show strong 
disagreement in the earlier part of the record, 
indicating that we do not have a constrained 
observational record of tropical width that 
extends much before the beginning of the 
satellite era (around 1979). While differences do 
exist, the agreement is better after 1979 (see also 
Nguyen et al. 2013), and therefore the following 
analysis will focus on the variability in the 38-year 
period between 1980 and 2017.  

Since 1980, the annual mean width of the tropics 
has fluctuated interannually with a standard 
deviation (σ) of ~0.8°–1° latitude (Figure 1c), with 
individual years typically varying within an ~4º 
latitude range (~4σ, Figure 1a). Figure 1b illustrates 
similar time series but for 40 members of a large 
ensemble of simulations performed with the 
Community Earth System Model, version 1 (CESM1, 
Kay et al. 2015), referred to as LENS hereafter. All 
40 simulations are run under an identical forcing 
scenario (see Figure 1 caption) and differ only 
in a round-off level perturbation introduced to 
the surface temperature field in 1920. Thus, the 
differences between ensemble members arise 
only from internal ocean-atmosphere variability. 
From 1980 to 2017, CESM exhibits comparable 
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Figure 1. (a) Time series of annual mean tropical width for five different 
reanalyses: ERA-Interim (Dee et al 2011), JRA55 (Kobayashi et al 2015), MERRA2 
(Gelaro et al 2017), ERA20C (Poli et al 2016), 20th century reanalysis (20thC; 
Compo et al. 2011). (b) Time series of annual mean tropical width from the 
CESM LENS (grey=individual members, black=ensemble mean). The LENS is run 
under CMIP5 historical forcings prior to 2006 and under the RCP8.5 scenario 
thereafter. (c) Interannual standard deviation, σ, of the annual mean width, 
the NH DJF edge and the SH DJF edge calculated using 1980–2017 for the 
three more strongly constrained reanalyses (ERA-Interim (red), JRA55 (green), 
MERRA2 (blue)), the CESM LENS (grey circles) and CESM simulations run with 
the same forcings as LENS, but with observed SSTs prescribed at the lower 
boundary (grey asterisks). (d) is as (c) but for the linear trends from 1980-2017. 
The colors in panels (c) and (d) correspond to those in (a) and (b) and note that 
zonal wind at 10 m is used for the reanalyses while the zonal wind at the lowest 
model level is used for CESM.
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interannual variability to observations (Figure 1c). But 
the LENS makes clear that even our assessment of 
interannual variability over a 38-year record is subject 
to considerable uncertainty since individual members 
are characterized by an annual mean tropical width σ of 
anywhere between 0.8° and 1.3° latitude.  

Between 1980 and the present, ERA-Interim (Dee et al. 
2011) and JRA-55 (Kobayashi et al. 2015) reanalyses have 
exhibited an annual mean widening trend of around 0.3° 
per decade (Figure 1d, see also Lucas et al. 2014 and 
references therein). MERRA2 (Gelaro et al. 2017) exhibits 
a considerably weaker trend, but there may be reasons 
to be concerned about the ability of MERRA2 to constrain 
the divergent tropical circulation (DeWeaver and Nigam 
1997). The ensemble mean trend of the CESM LENS, 
which can be considered to be the externally forced 
trend in CESM, is only around 0.13° per decade. The 
wide range of trends exhibited by individual members, 
however, indicates the dominant role that natural 
variability can play over a 38-year record. Individual 
members are characterized by trends of anywhere 
between 0.04° per decade and 0.43° per decade, which 
illustrates the importance of comparing the observations 
with a large number of model simulations that span the 
range of possible outcomes that could arise as a result of 
the combined influences of external forcing and natural 
variability (Garfinkel et al. 2015). The presence of external 
forcings has clearly weighted the CESM simulations 
toward exhibiting a widening trend in the annual mean, 
but the wide range of behaviors seen in individual 
members demonstrates the challenges in quantifying 
the forced trend in our one observed record. 

Even if the presence of internal variability renders our 
estimation of the forced trend in the real world highly 
uncertain, can we at least conclude that the trends that 
have been observed are outside of the expectations 
from natural variability alone? To provide an indication 
of this, we can compare with the trends that are present 
in unforced preindustrial control (piControl) simulations. 
This comparison is made in Figure 2 using 22 piControl 
simulations from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5), along with an 1800 year long 
piControl simulation that accompanies the CESM LENS. 
For annual mean tropical width and the Northern 
Hemisphere DJF tropical edge, the majority of the CMIP5 
models exhibit interannual variability that is comparable 
with observations (Figure 2a,c). The discrepancy between 
models and reanalyses is slightly greater in the Southern 
Hemisphere DJF, which may relate to common biases 
in the Southern Hemisphere jet stream (which is often 
biased equatorward) and Southern Annular Mode 
behavior (which is often overly persistent) (Kidston and 
Gerber 2010; Simpson and Polvani 2016). Nevertheless, 
roughly half of the CMIP5 models and CESM exhibit 
interannual variability in the Southern Hemisphere DJF 
tropical edge that is comparable with reanalyses. Figures 
2b,d,f illustrate the range of possible trends that could 
be obtained from 38-year segments of these piControl 
simulations (black bars). For annual mean tropical width, 
the ERA-Interim and JRA55 trends lie outside of the 
distribution of trends found in the piControl simulations 
of almost all the models, indicating that, to the extent 
we can trust the representation of long term natural 
variability in the models, the observed trends in annual 
mean tropical width are extremely unlikely to have 
arisen from natural variability alone (consistent with the 
tendency of the forced LENS simulations to produce a 
tropical widening (Figure 1d)). The same cannot be said 
for the DJF Northern and Southern Hemisphere trends. 
While the reanalyses indicate a poleward migration of 
the Northern and Southern Hemisphere tropical edges 
during DJF, these trends are not outside of the realms of 
what natural variability can produce. While there is good 
reason to believe that stratospheric ozone depletion 
has contributed to an expansion of the tropics in the 
Southern Hemisphere during DJF (Polvani et al 2011; 
McLandress et al 2011; Garfinkel et al. 2015; Waugh et 
al 2015; Solomon and Polvani 2016), consistent with the 
fact that the forced CESM LENS does show a poleward 
expansion in the ensemble mean (Figure 1d), this has not 
been sufficient to give rise to an observed trend that is 
larger than could arise from natural variability alone. In 
the Northern Hemisphere DJF, the fact that the reanalysis 
trends lie within the expectations from natural variability 
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Figure 2. (top) Annual mean tropical width, (middle) Northern Hemisphere DJF tropical edge, (bottom) Southern Hemisphere 
DJF tropical edge. (left) Interannual standard deviation (σ) for the reanalyses (1980–2017) both before and after detrending, 
for CMIP5 piControl simulations from 22 models, and for a piControl simulation with CESM. Black circles depict the mean 
σ calculated from all years of simulation and the error bars depict the 2.5 to 97.5 percentile range of σ's estimated from 
overlapping segments of length 38 years from the piControl simulations. 2.5 to 97.5 percentile ranges that do not encompass 
the observed value are shown by dotted lines. (right) Trends from 1980-2017 for the reanalyses along with the 2.5 to 97.5 
percentile range of trends obtained from overlapping 38-year segments of the piControl simulations (black error bars). Black 
circles depict the 2.5 and 97.5 percentiles of trends obtained from 1000, 38-year time series obtained by picking individual years 
at random from the piControl simulation i.e., removing any autocorrelation from the time series due to slow processes. Grey 
bars depict the 2.5 to 97.5 percentile range of trends obtained from 1000, 38-year samples of synthetic time series generated 
using Gaussian white noise with an interannual σ equal to that of the respective reanalysis (detrended) or simulation. Note that 
for DJF, a record length of 38 years means 37 DJF seasons are used to calculate σ and the trend. The CMIP5 piControl simulation 
lengths range from 255 to 1000 years, and the CESM piControl simulation is 1800 years long.
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is consistent with the results from the forced LENS 
simulations, which show no forced trend over this time 
period (Figure 1d).    

What then is the nature of this natural variability? Many 
studies have discussed the important role of the El Niño-
Southern Oscillation (ENSO) and the Pacific Decadal 
Oscillation (PDO) in contributing to observed trends, 
particularly for the Northern Hemisphere (Grassi et al. 
2012; Garfinkel et al. 2015; Mantsis et al. 2016; Allen 
and Kovilakam 2017; Amaya et al; 2017) with cold ENSO/
PDO phases being characterized by a wider tropical 
belt (see also Allen et al. this issue). Indeed, it can be 
seen in Figure 1d that the ensemble mean of 10 CESM 
simulations with prescribed historical SSTs as opposed 
to a coupled ocean (gray asterisks) exhibits a greater 
expansion of the Northern Hemisphere tropics during 
DJF. However, ambiguity remains over whether decadal 
modes of variability in the ocean are actually required 
to explain the trends or whether the apparent decadal 
influence of the ocean simply arises from the chance 
sampling of individual years characterized by different 
ENSO states. An appropriate null hypothesis to consider 
is that the trends that arise due to internal variability do 
so simply as a result of the chance sampling of individual 
years with no underlying correlation from one year to 
the next. Can we distinguish the variability from this 
possibility? The answer is no. In Figure 2b, this is tested 
in two different ways for the piControl simulations. 
The first is just by using a bootstrapping methodology 
where individual years from the piControl simulation are 
randomly sampled and then strung together so that, by 
construction, there is no correlation from one year to 
the next. An assessment of the range of 38-year trends 
that can be obtained from such samples is shown by the 
black circles that accompany the piControl trend ranges 
in Figure 2b,d,f. These indicate that the actual trends 
simulated by the models are consistent with the chance 
sampling of individual years with no correlation from one 
year to the next. The second test takes this a step further 
and assumes that the variability in tropical width is given 
by a Gaussian white noise distribution characterized by 
the interannual σ. The gray bars in Figure 2b,d,f indicate 

that the trends simulated by the models are consistent 
with this representation of the variability. We, therefore, 
have no indication from the models that their internal 
variability is anything more than the chance sampling of 
year-to-year fluctuations with one year being unrelated to 
the next.  While multidecadal modes of variability in the 
ocean could play a role, this it not necessary to explain 
the long-term trends that arise due to natural variability 
in the models. Building on this model analysis, if we then 
assume that the observed atmosphere displays internal 
variability that is simply represented by Gaussian white 
noise with σ equal to the observed interannual σ, then 
it can be seen that random sampling of this noise can 
give rise to 38-year trends as large as 0.25° per decade 
in the annual mean width, 0.33° per decade in Northern 
Hemisphere DJF extent and 0.23° per decade in Southern 
Hemisphere DJF extent (gray bars in Figure 2b,d,f). The 
actual observed annual mean width trend lies outside of 
this range, but the Northern and Southern Hemisphere 
DJF trends do not.     

The asterisks in Figure 1d make clear that even 
without differences in SST variability, the sampling of 
atmospheric noise can give rise to a wide range of trends. 
The relative roles of atmosphere-only variability and 
coupled ocean-atmosphere variability can be assessed 
more quantitatively within CESM by comparison of the 
coupled piControl simulation with a control simulation 
with prescribed climatological SSTs derived from the 
coupled simulation (Figure 3). Certainly, ocean variability 
is required to explain the full range of interannual 
variability that is seen in the coupled simulation, but 
variability that is internal to the atmosphere is actually 
a dominant contribution. The interannual σ found in the 
climatological SST simulation is around 72% of that in 
the coupled simulation for annual mean tropical width, 
78% for the Northern Hemisphere DJF edge, and 84% for 
the Southern Hemisphere DJF edge. Furthermore, upon 
regressing out the contribution to interannual variability 
that is linearly related to ENSO in the coupled simulation 
(via the Nino3.4 index), the σ of tropical width/extent is 
reduced to similar values to those of the climatological 
SST simulation (compare filled circles and asterisks in  
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Figure 3), indicating that the ocean’s influence on tropical 
width occurs primarily through ENSO. Interannual 
variability is also reduced in the reanalyses upon 
regressing out the component related to ENSO, but the 
magnitude of this reduction is uncertain given the length 
of the records.  

The 38-year trends that can arise as a result of internal 
atmospheric variability in CESM are almost as large as 
those found in the fully coupled simulation (Figure 3d,e). 
Based on CESM, internal atmospheric variability, which 
is inherently unpredictable, is capable of giving rise to 
trends over the length of the satellite record that are 
of the order 0.2° per decade for annual mean tropical 
width, 0.3° per decade for the Northern Hemisphere DJF 
edge, and 0.2° per decade for the Southern Hemisphere 
DJF edge. Given that CESM compares favorably with the 
reanalyses in terms of its interannual variability and 
no model gives any indication of long-term variability 
being more than the result of the random sampling of 
individual years, there is good reason to believe that this 
is also true of the real world; although this is difficult to 
conclude with certainty.
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Figure 3. (a), (b) and (c) show interannual standard deviation of the 
annual mean tropical width, the DJF Northern Hemisphere tropical 
edge and the DJF Southern Hemisphere tropical edge respectively. 
CESM simulations and three reanalyses are shown. Open circles 
show the regular simulation/reanalysis; closed circle for CESM shows 
a simulation where the climatological SSTs of the coupled run are 
prescribed and asterisk shows the standard deviation after regressing 
out the contribution related to the Nino3.4 index (SST anomalies area 
averaged over 5°S–5°N, 190°E–240°E). The error bars depict the 2.5 
to 97.5 percentile range of uncertainty on the value estimated using 
bootstrapping with replacement. (d), (e) and (f) show 38-year trends in 
annual mean tropical width, DJF Northern Hemisphere tropical edge 
and DJF Southern Hemisphere tropical edge, respectively. The grey 
bar shows the 2.5 to 97.5 percentile range of trends obtained from 
a synthetic white noise time series with the interannual standard 
deviation while the black bars show the actual 2.5 to 97.5 percentile 
range of 38-year trends from the simulations. The horizontal lines 
for reference show observed trends. The coupled piControl “regular" 
simulation with CESM is 1800 years long, and the simulation with 
climatological SSTs is 2600 years long.
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In summary, natural variability has likely played an 
important role in the trends that have been observed 
in tropical width in recent decades and will continue 
to influence the trends we observe in the future. A 
substantial fraction of this natural variability likely arises 
from internal atmospheric processes, with the remainder 

being accounted for primarily by ENSO variability. While 
we can make use of state-of-the-art global climate models 
to determine the magnitude of forced trends, we must 
continue to bear in mind the power of internal variability 
when it comes to isolating the influence of external 
forcings on our single observed record.  
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