


The role of the climate system
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The role of the atmosphere

<+ The atmosphere is the most volatile component
of climate system

<+ Winds in jet streams exceed 100 mph or even
200 mph; winds move energy around.

* Thin envelope around planet 90% within 10 miles
of surface 1/400™ of the radius of Earth;
clouds appear to hug the surface from space.

* The atmosphere does not have much heat
capacity

<+ "Weather” occurs in troposphere (lowest part)

<+ Weather systems: c]/clones, anticyclones, cold and
warm fronts tropical storms/hurricanes move
heat around: mostly upwards and polewards
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Role of Oceans
The oceans cover 70.8% of the Earth's surface.

The oceans are wet: water vapor from the surface
provides source for rainfall and thus latent heat
energy to the atmosphere.

The heat capacity of the atmosphere is equivalent to
that of 3.5 m of ocean. The oceans slowly adjust to
climate changes and can sequester heat for years.

The ocean is well mixed to about 20 m depth in summer
and over 100 m in winter. An overall average of 90 m
would delay climate response by 6 years.

Total ocean: mean depth 3800 m.

Would add delay of 230 years if rapidly mixed. In
reality, the response depends on rate of ventilation of
water through the thermocline (vertical mixing).

Estimate of delay overall is 10 to 100 years.

The ocean currents redistribute heat, fresh water,
and dissolved chemicals around the globe. “




The great ocean conveyer:
of heat, freshwater and salts




Role of Land

»>Heat penetration into land with annual cycle is ~2 m.

»Heat capacity of land is much less than water:
>Specific heat of land 47 less than sea water
»For moist soil maybe factor of 2

» Land plays lesser role than oceans in storing heat.
Consequently:

> Surface air temperature changes over land are large
and occur much faster than over the oceans.

» Land has enormous variety of features: topography,
soils, vegetation, slopes, water capacity.

> Land systems are highly heterogeneous and on small
spatial scales.

> Changes in soil moisture affect disposition of heat:
rise in temperature versus evaporation.

» Changes in land and vegetation affect climate through
albedo, roughness and evapotranspiration. m‘\




Role of Ice

Major ice sheets, e.g., Antarctica and Greenland. Penetration of
heat occurs primarily through conduction.

= The mass involved in changes from year to year is small but
important on century time scales.

Unlike land, ice melts = changes in sea level on longer time-scales.

Ice volumes: 28,000,000 km*® water is in ice sheets, ice caps and glaciers.

Most is in the Antarctic ice sheet which, if melted, would increase sea level
by ~65 m, vs Greenland 7 m and the other glaciers and ice caps 0.35 m.

In Arctic: sea ice ~ 3-4 m thick
Around Antarctic: ~ 1-2 m thick

Ice is bright: reflects the solar radiat Y i
Ice T = radiation reflected = cooler
The West Antarctic Ice Sheet (WAIS

= Warming could alter grounding of ’rhr WA
vulnerable to rapid (i.e. centuries) disin i’i; . \

|
X .

= rise in sea level of 4-6 m. R
May be irreversible if collapse begins.




Role of Coupling
El Nino-Southern Oscillation ENSO

Some phenomena would not otherwise occur:

ENSO is a natural mode of the coupled ocean-
atmosphere system

ENSO: EN (ocean) and SO (atmosphere) together:
Refers to whole cycle of warming and cooling.

ENSO events have been going on for centuries
(records in corals, and in glacial ice in S. America)

ENSO arises from air-sea interactions in the tropical
Pacific

El Nifio: warm phase, La Nifa: cold phase

EN events occur about every 3-7 years
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Energy on Earth

The main external influence on planet Earth is from radiation.

Incoming solar shortwave radiation is unevenly distributed owing to the
geometry of the Earth-sun system, and the rotation of the Earth.

Outgoing longwave radiation is more uniform.
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Energy on Earth

The mcommg radiant energy is transformed into -
various forms (internal heat, potential energy,
latent energy, and kinetic energy) moved around
in various ways primarily by the atmosphere and
oceans, stored and sequestered in the ocean,
land, and ice components of the climate system,
and ultimately radiated back to space as infrared
radiation.

An equilibrium climate mandates a balance between the
incoming and outgoing radiation and that the flows of
energy are systematic. These drive the weather
systems in the atmosphere, currents in the ocean,
and fundamentally determine the climate. And they
can be perturbed, with climate change.
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Top of atmosphere net radiation
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Annual mean net surface flux

ERBE Period (February 1985 — April 1989) Net Upward Surface Flux
Fs Annual Mean > QO into atmosphere W m™2
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Net Surface Flux (F,) Anomalies
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The Annual Cycle of

Total Upward Surface Energy Flux

[ERBE+NCEP/NCAR, Feb 1985 - Apr 1989]
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Ocean only

a)Rr . - ERBE(vs CERES) [ocean-only, 0.01 PW deg'] b) Ry’ ) ~ ERBE(vsCERES) [ocean-only, 0.01 PW deg']
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c) V-Fy NRA (vs ERA) [ocean-only, 0.01 PW deg’] d) V-F, NRA (vs ERA) [ocean-only, 0.01 PW deg|
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a) Total ITranslport ERBE (v§ Multiple Elstima?es) . . [PW] b) Atmo§pherg NRA (\fs EH{'\, NRA CEIF{ES I?eriod) . . [PW]
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Global Eneray Flows W m~2

Incoming Outgoing

Solar Longwave
Radiation Radiation

341.3Wm*

Reflected by
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Atmosphere
Emitted by

Atmosph

Reflected by

Surface, Back

Radiation

333

i Absorbe
Surface
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Trenberth et al 2009



Mean Fluxes + 2¢, : Best Estimate
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Global temperature and carbon dioxide:
anomalies through 2010

== Temperature
— CO,

Base period 1900-99; data from NOAA




Global SSTs are increasing: base period 1901-70

______ﬂ

Through 2009
Data: Hadley Centre, UK



Atlantic Ocean
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Global increases in SST are not uniform. Why?

» Tropical Indian Ocean has warmed to be competitive as
warmest part of global ocean.

< Tropical Pacific gets relief from global warming owing to
ENSO?

*» Atlantic has MOC/THC

The historical patterns of SST are NOT well simulated by
coupled modelsl!

Relates to ocean uptake of heat and ocean heat content.

The result is an imprint on global weather patterns:

NCAR k



Global warming from increasing greenhouse gases
creates an imbalance in radiation at the Top-Of-
Atmosphere: now order 0.9 W m=.

Main sink is ocean: thermosteric sea level rise
associated with increasing ocean heat content.
Some melts sea ice: no change in SL

Some melts land ice.

Sea-ice melt does not change sea level.

JREC



Changes in ocean state
from 1950-1960's o0 1990-2000's (IPcC 2007 Figure 5.18)

Total sea level rise

Steric sea level rise

rctic

reduced
seaice
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- freshening

CaCO; horizon

South Pole Equator North Pole

** Heat and CO, increased / decreased into ocean * f Deepening / shallowing of isotherms, isopycnals
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‘ f Freshwater (Precipitation - Evaporation) increased / decreased Decreased pH
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Overturning transport [ Sv ]

AMOC: Sampling Issues

-

04/01/04 07/01/04 10/01/04 01/01/05 04/01/05

The overturning transport 26.5N above 1000 m (green line), and the five
snapshot estimates from hydrographic sections by Bryden et al., (2005).

All time series have been smoothed with a three-day low pass filter.
As modified from Baringer and Meinen (2008).



IPCC: Causes of decadal variability not well understood
- cooling due to volcanism?
- artefact due to temporally changing observing system?

— NoO statement on acceleration possible in AR4

Annual ocean heat content 0-700m

relative to 1961-90 average )
T T 9 Since then:

Argo problems

f IlShII etal 2006 XBT drrop rate
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Revused ocean heat com‘enf

World Ocean Yearly HC, 0-700m
1957-1990 reference period
[1969-2003 trend, 1022 J/yr]
—— Present paper (average of 4 seasons) [0.32]
{ - Ishii and Kimoto (2009) [0.24]
—.— Domingues et al. (2008) [0.41]
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Levitus et al 2009
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Year

Yearly time series of ocean heat content (1022 J) for the 0-700 m
layer from Levitus et al (2009), Domingues et al. (2008) and Ishii and
Kimoto (2009) with a base period of 1957-1990. Linear trends for

each series for 1969-2007 given in the upper portion of the figure.
JREC




0-700m Heat Content Anomaly
1 1 1 1

Palbmer ot al (2007
Sl and Mupby (20007
Crommgues et al. (2008)

Levius et al. (2009
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SST (red)
2003-2008 -
1990-2008
10 m depth
ARIVO -
WOAQ5

Temps

Difference for
2003-2008
From WOAQ5
Levitus et al

Von Schuckmann et al JGR 2009 jpee



» VS did not provide 0-700 m OHC vs O to 2000m

> Some floats are programmed to go only to 1000 m
and do nhot go to 2000 m, so that coverage
decreases with depth

> How come all the error bars are the same even
though coverage is increasing?

» How good is the quality of the sensors over this
time? Up to 30% report negative pressures at the
surface.

JREC



Ocean Heat Content Anomalies
10% Joules

— 0-700 m (ref 1)
— 0.64Wm? (ref1)
— == 0.54W m?(ref 8)

1 1 | 1 | | | |
1994 1996 1998 2000 2002 2004 2006 2008 2010

1. Lyman et al 2010 :to 700m

8. von Schuckmann et al 2009 :to 2000m From Trenberth 2010 Nature
JRCC
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Mzlting icz

IPCC estimated melting ice contribution fo SL rise was 1.2
mm/yr for 1992 to 2003.

How much is missed?

Is the Antarctic and Greenland melt a transient or not?
Many glaciers are not monitored

Ocean warming may change basal melting: poorly known
Ice sheets, buttressing by ice shelves poorly modeled
Concern future SL rise underestimated

Need process studies and improved models

Changes salinity: fresh water budget

> affects ocean currents (MOC)

VVVVYVYVVYVYY

JREC



Snow cover and Arctic sea ice are decreasing

Northern Hemisphere Extent Anomalies Sep 2008 Arctic sea ice

area decreased by

2.7% per decade
(Summer: -7.4%/decade)

AL up to 2006:
'1' 2007: 22% (106 km?)
‘é lower than 2005
2008: second lowest
2010: third lowest

‘6reenland and Antarctica ice sheets and glaciers are shrinking:
Accelerated rate especially from 2002 to 2006?

-To melt 106 km2 ice 1 m thick (2007) to 10°C = 3.4x10%0 J
*Globally per year since 2004 this is 0.02 W m-2



Hydrological Cycle

— Atmosphere

12.7
Ocean to land

Water vapor transport
40
C:_,/i%,_:\) / Vv
'/ //f ;-/Land
// /" /" Precipitation
a 113 f f *

Evaporation, transpiration 73

Precipitation
373

Ocean Vegetation
Evaporation 413 Land

—— Rivers

T— Lakes
178
Surface flow
40’

Soil moisture
122 «*
Permafros

1,335,040 Ground water flow JEFCSEERRS Y.

15,300
Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

Trenberth et al 2007



Divergences of water fluxes from E-P estimates
over the oceans; values in Sv:
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A. Mean salinity 1951-2000
C. Mean E-P 1980-1993 m3/yr
B. Linear trends pss/50yr (top)

Durack and Wijffels 2010 JC
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Linear trends pss/50yr
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Durack and Wijffels 2010 JC
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Subduction on isopycnals appears to account for much of the subsurface changes
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Sea level is

rising in 20 century

Sea level (mm)
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Rates of sea level rise:

1.8 + 0.5 mm yr-!, 1961-2003
1.7 + 0.5 mm yr-t, 20™ Century
3.1+ 0.7 mmyrt, 1993-2003

Sea level rise:
*0.17m + 0.05 m 20* Century




Sea level is rising:
from ocean expansion and melting glaciers

Altimetric GMSL (TP+)1+J2) Slope = 3.27 mm/yr Since 1992 Global

sea level has
risen 55 mm
(2.2 inches)

To 2003: 60%
from expansion
as ocean
temperatures
rise, 40% from
melting glaciers

1¥92 1994 1996 1998 2000 2002 2004 2006 2008 2010 201

AVISO: from TOPEX, Jason 1, Jason 2. Ann cy removed, IB, GIA applied



What about 2003 to 20082

Global mean surface temperatures

il

1997 2003 2008
year
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Can we track energy since 1993 when we have had good
sea level measurements?

390
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s Trenberth and Fasullo Science 2010
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Where does energy go?

1993-2003

2004-2008

OLand

W Arctic seaice
H|ce sheets
OLand ice
OAtmosphere
B Ocean

B Sun

O Residual

B Required

1020 Joules/yr

Trenberth 2009



Missing energy in CCSM4?

| Ensemble Member ‘ ¥ L
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In CCSM4, during periods with no sfc T rise, the energy imbalance at
TOA remains about 1 W m-2 warming. So where does the heat go?
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In CCSM4, during periods with no sfc T rise, the energy goes into the
deep ocean, somehow.

RCP4.5 -1 21 Century Ocean Heat Content ‘
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Wnere does tne neat go?

Questions regarding the mechanisms driving variability in
deep ocean heat content remain. Both the CCSM4 and
observations suggest that ENSO plays a necessary, if not
sufficient, role. Strong recent ENSO events, including
the EI Nifio of 1997/98 and the La Nifa of 2007/08
exert a strong influence on trends in global temperature
computed across this period.

Similarly, cooling decades from the CCSM4 are bounded by
E/ Nifio events at their initiation and La Nifa events are
their termination. Yet other intervals bounded by El Nifio
and La Nifia are not accompanied by significant cooling.
Our current work focuses on understanding this variable
association between ENSO and global temperature
trends.
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Carbon Inventories of Reservoirs that Naturally
Exchange Carbon on Time Scales of Decades to Centuries

Ocean Anth.
C=0.35% Soil=2300 Pg€"

/El&ﬂ‘fS 650 PgC

Atm =775 PgC

Ocean
38,136 PgC

 Oceans contain ~90% of carbon in this 4 component system

« anthropogenic component is difficult to detect
IRCC



Annual mean air-sea CO, flux for 2000

Based on 3 million measurements since 1970
Global flux is 1.4 Pg C/yr
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The challenge is to better determine the heat budget at
the surface of the Earth on a continuing basis:

Provides for changes in heat storage of oceans, glacier
and ice sheet melt, changes in SSTs and associated
changes in atmospheric circulation, some aspects of which
should be predictable on decadal time scales.

Several models now can simulate major changes like the
Sub-Sahara African drought beginning in the 1960s, the
1930's "Dust Bowl" era in North America, given global SSTs.

Can coupled models predict these evolutions? (Not so far).
But there is hope that they will improve.

In any case models should show some skill simply
based on the current state, when it becomes well
known and properly assimilated into models:

Need better observing system!
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