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Sayings that describe changes in
precipitation with climate change

Sunshine is delicious, rain is refreshing, wind
braces us up, show is exhilarating, there is
really no such thing as bad weather, only

different kinds of good weather.
John Ruskin

The rich get richer and the poor get poorer!
More bang for the buck
It never rains but it pours!
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The presence of moisture affects the disposition
of incoming solar radiation:
Evaporation (drying) versus temperature increase.

Human body: sweats
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Homes: Evaporative coolers (swamp coolers) § @
Planet Earth: Evaporation (if moisture available)

e.g., When sun comes out after showers,

puddles dry up: before temperature
increases.
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How should precipitation change
as climate changes?

Usually only total amount is considered
But most of the time it does not rain
The frequency and duration (how often)
The intensity (the rate when it does rain)
The sequence
The phase: snow or rain

The intensity and phase affect
how much runs off versus how
much soaks into the soils.
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Daily Precipitation at: 2 stations
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Monthly
Amount 75 mm

Frequency 6.7%
Intensity 37.5 mm

Amount 75 mm

Frequency 67/%
Intensity 3.75 mm
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Frequency of precipitation: oceans
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Estimated frequency. of occunrence (7:) of precipitation
from Cloudsat observations find precipitatfion 10.97% of:
Time over oceans (Ellis et al 2009 GRL)




The intermittent naturels
(average frequency. over
4

that
Can not come firom local' column.
Can not; come firom E.
¢ ° Hence has*™o come from transport by storm-scale
circulation into storm.

ipitation
>eans is 117%) means

@n' average, nain| producing systems
(e.g., exiratnopicall cyclones; thundersiornisy:
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How is precipifasion changing?
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Changes in ocean state

from 1950-1960's 0 1990-2000's (IPcc 2007 Figure 5.18)

Total sea level rise

[ Arctic |

reduced
seaice
extent

_____ freshening

CaCO; horizon

~ South Pole Equator North Pole

** Heat and CO, increased / decreased into ocean * f Deepening / shallowing of isotherms, isopycnals
and CaCQ; horizon
‘ f Freshwater (Precipitation - Evaporation) increased / decreased Decreased pH

D Freshening
Salinification



GPCP Global precipitation 1979-2008
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Land precipitation| is changing significantily. overw

n
| Central Morth America (818 mm)
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Smoothed annual anomalies for precipitation (_°/o) over land from
1900 to 2005; other regions are dominated by variability.
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Drought is incrzasing most places

P I N . . .
Y * .. Mainly decrease in rain

over land in tropics and
subtropics, but enhanced
by increased atmospheric
demand with warming

(PDSI) for 1900
to 2002.

N

The time series
(below) accounts
for most of the
trend in PDSI.

————————— ~ Dai et al 2004
1900 1920 1940 1960 1980 2000 I IPCC 2007 n
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Pinatubo Effect on Hydrological Cycle

Freshwater discharge - 3.3

— Land precipitation )
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Estimated water year (1 Oct-30 Sep) land precipitation and river discharge
into global oceans based on hindcast from output; from CLM3 driven by
observed forcings calibrated by obsenved discharge at 925 rivers.

Note: 1) effects of Pinatubo; 2) downward trend (contrast
to Labat et al (2004) and 6edney et al (2006) owing to

more data and improved missing data infilling)
Trenberth and Dai 2007; Dai et al. 2009 n
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Geoengineering:

One proposed solution
to global warming:

- Emulate a volcano:
Pinatubo

solar radiation

- Is the cure worse
than the disease?
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Indications are that hige

1) climate models over-estimate the cooling =
with volcanoes (overestimate the benefits)

2) Climate models under-estimate the changes in
precipitation and the hydrological cycle
(underestimate the bad side effects)

3) Costs are high and go on forever

4) There is not an adequate observing system to tell if
the effects are doing what they are supposed to, or
saying just what is happening.

5) Holding out false hope of a magic pill solution works
against taking seriously needed actions.

6) Who is to make decisions for all of humanity when
there are potentially bad side effects that hurt
some more than others? (Ethical issues)




Flood damages:
1. Local and national authorities work fo prevent: floods
(e.g., Corp of Engineers, Bureau of Reclamation, Councils)

Build ditches, culverts, drains, levees
Can backfirel

2. Deforestation in many countries:
Leads to faster runoff, exacerbates flooding

3. Increased vulnerability to flooding through
settling in flood plains and coastal regions
Increases losses.

Flooding statistics' NOI; useful for
determining weather part: of: flooding!
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[Factors|in Changes in Precipitation

It never rains but it pours!



How should precipitation P change
as the climate changes?

é With increased GHGs: increased surface
heating evaporation Efl and P!

é Clausius Clapeyron: water holding capacity
of atmosphere goes up about 7% per °C.

¢ With increased aerosols, EU and P
6 Net global effect is small and complex
¢ Models suggest Efl and PI 2-3% per °C.



Controls on the changes in net precipitation
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Trenberth et al 2009

1.+2. Evaporation
s limited by
energy available

3. Latent heating
has to be mostly
balanced by net
LW radiative
losses (SH small)

4. Over land:
Latent heating is
partly balanced
by sensible heat

N\



Aerosols have mulfiple effects:
1. Direct - cooling
from sulfate aerosol:
milky white haze, reflects
2. Direct - absorbing
e.g. black carbon
3. Indirect - changes cloud

1. Form cloud condensation nuclei,
more droplets, brighter cloud;  brtseited G
Less rain, longer lasting cloud; : |
Absorption in cloud heats and

burns off cloud

Less radiation at surface means

less evaporation and less cloud

A

Lifetime only a week or so: Very regional in effects
Profound effects,at: surface:

Ramanathan et al 2001 Short-circuits hvdroloaical ]
ort-circuifs hy r'ojoglc‘:_crl--cyc ‘Q
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Table 1. Overview of the different aerosol indirect effects and range of the radiative budget perturbation at the top-of-the atmosphere ( Fy o 4)
[Wm—l], at the surface ( Fy ) and the likely sign of the change in global mean surface precipitation (P) as estimated from Fig. 2 and from

the literature cited in the text.
Effect Cloud type Descniption Froa Fyre P
Indirect aerosol effect for All clouds The more numerous smaller —0.5  simular n/a
clouds with fixed water amounts cloud particles reflect to to
(clond albedo or Twomey effect) more solar radiation -19 Fropa
Indirect aerosol effect with All clonds Smaller cloud particles —0.3  similar  decrease
Varying water amounts decrease the precipitation to to
(cloud lifetime effect) efficiency thereby prolonging —14  Frgoa
cloud hifetime
: Semi-direct effect All clouds Absorption of solar radiation +0.1 larger decrease
- | by soot may cause evaporation to than
I of cloud particles —05 Froa
~ Thermodynanuc effect Mixed-phase  Smaller cloud droplets delav 7 ? increase or
a clouds the onset of freezing decrease
Glaciation indirect effect Mixed-phase  More ice nuclel increase the 7 ? INCTease
- clouds precipitation efficiency
h Fiming mdirect effect Mixed-phase  Smaller cloud droplets decrease 7 ? decrease
- clouds the riming efficiency
N Surface energy All clouds Increased aerosol and cloud n/a —1.8 decrease
budget effect optical thickness decrease the to
net surface solar radiation —4

Lohmann and Feichter 2005
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Radiation Solar Longwave

101.9Wm? Radiation f Radiation
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Emitted by /8 Windowy

Atmosphere
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Latent

333
Back
Radiation

Reflected by

If the only change in
climate is from
increased GHGs:
then SW does not
change (until ice
melts and if clouds
change), and so OLR
must end up the
same.

But downwelling and
net LWX increases

and so other terms
must change: mainly
evaporative cooling.

Transient response may differ from equilibrium (see Andrews et al. 09)
Land responds faster. Radiative properties partly control rate of

increase of precipifation.: Stephens and Ellis 2008

Trenberth et al 2009 n
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A basic physical law tells us that the water holding
capacity of the atmosphere goes up at about 7% per
degree Celsius increase in temperature. (47 ozp °F)

Observations show that this is happening at the
surface and in lower atmosphere: 0.55°C since 1970
over global oceans and 4% more water vapor.

This means more moisture available for storms and

an enhanced greenhouse effect. 1,14 yater vapor

More intense rains (or snow) but
longer dry spells

Trenberth et al 2003
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Precipitation vs Temperature . ,1
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Temperature vs Precipitation

Anticyclonic regime

GoUEyCess sun sunny.

e Mor2JgiRgeiEe W Dry: Less soil moisture
SigGCEenengy: LH |8  Surface energy: LHY SHT

Cyclanie r2efly

Rain ¢ Temperature T

Summer: Land
Strong negative correlations
Does not apply to oceans



Ale nolds morz yarze yaooe or slignze
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é The C-C effect is important over oceans (abundant
moisture) and over land at mid to high latitudes in winter.

é "The rich get richer and the poor get poorer”. More
moisture transports from divergence regions (subtropics)
To convergence zones. Result: wet areas get wetter,
dry areas drier (Neelin, Chou)

é But increases in moist static energy and gross moist
instability enables stronger convection and more intense
rains.  Hadley circulation becomes deeper.

é Hence it changes winds and convergence: narrower
Zones,

¢ "Upped ante” precip decreases on edges of convergence
zones as it takes more instability to trigger convection.
(Neelin, Chou)



Flow zlsz snould gpzeioirarion ¢
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"More bang for the buck": With increased moisture,
the winds can be less to achieve the same transport.
Hence the divergent circulation weakens. (Soden & Held)

Changes in characteristics: more intense less frequent
rains (Trenberth et al)

Changed winds change SSTs: ITCZ,
storm tracks move: dipoles

BAnflif.2898¢8
NN

Example: ENSO

Type: snow to rain

Snow pack melts sooner, runoff earlier,
summer soil moisture less, risk of
summer drought, wildfires increases




Model predictions
“Rich get richer, poor get poorer"

Projections: Combined effects of increased

precipitation intensity and more dry days
contribute to lower soil moisture
a) Precipitation b) Soll mmsture
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(Sun et al.07)
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Modz] opzeioirarion ez

Oceans

oIt emz L NG
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é 2-3% per K increase in
E and P

6 C-Ceffect4-67%
¢ Sfc wind speed
¢ Sea-air T diffl
& SfcRH T 0:2%

AR4 models A1B
2046 to 2101

Richter and Xie 2008
Also: Trenberth 1998
Stephens and Ellis 2008
Allan and Ingram 2002




Przelofrarion i oz
“all modzls arz wrong, somz arz usziyl

A challenge: Issues:
Amount: distribution: Tropical Transients too weak
d b|€ ITCZ Hurricanes
2 MJOs
Frequency: Too often Easterly waves
InTenS iTy: TOO IOW a1 P CMIP3 Nedian PrevpBias mm day Gooat-02 e

Runoff: not correct
Recycling: too large
Diurnal cycle: poor

Lifetime: foo short RO V' aa?
(moisture) SRS Lol
_:I_[ | | | | |_]__



There are many
analyses of
models, but
models are
demonstrably poor
at many aspects
of the
hydrological cycle.
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