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ABSTRACT

Characteristics of precipitation estimates for rate and amount from three

global High-resolution precipitation products (HRPPs), four global Climate

Data Records (CDRs), and four reanalyses are compared. All data sets consid-

ered have at least daily temporal resolution. Estimates of global precipitation

differ widely from one product to the next, with some differences likely due

to differing goals in producing the estimates. HRPPs are intended to produce

the best snapshot of the precipitation estimate locally. CDRs of precipitation

emphasize homogeneity over instantaneous accuracy. Precipitation estimates

from global reanalyses are dynamically consistent with the large scale circula-

tion but tend to compare poorly to rain gauge estimates since they are forecast

by the reanalysis system and precipitation is not assimilated. Regional dif-

ferences among the estimates in the means and variances are as large as the

means and variances, respectively. Even with similar monthly totals, precip-

itation rates vary significantly among the estimates. Temporal correlations

among data sets are large at annual and daily time scales, suggesting that

compensating bias errors at annual and random errors at daily time scales

dominate the differences. However, the signal to noise ratio at intermediate

(monthly) time scales can be large enough to result in high correlations over-

all. It is shown that differences on annual time scales and continental regions

are around 0.8mm/d, which corresponds to 23W m−2. These wide variations

in the estimates, even for global averages, highlight the need for better con-

strained precipitation products in the future.
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1. Introduction35

Gridded estimates of daily (or higher frequency) global precipitation are becoming more and36

more needed for applications such as model validation, input for land-surface models, or extreme-37

event characterization. Detailed knowledge about current precipitation distributions is also nec-38

essary to quantify changes in precipitation estimated by global-warming scenarios, which tend to39

be described as changes in the mean and tails of the distribution. All of these applications assume40

that an accurate or at least adequate estimate of these distributions is obtainable.41

Because there is a strong connection between temporal and spatial variability of precipitation,42

and variability of precipitation decreases with both longer time and larger spatial averages (Bell43

et al. 1990), what comprises an adequate estimate depends on the application. On monthly scales44

global precipitation estimates have been used to assess the global water cycle (Trenberth et al.45

2007; Rodell et al. 2015), study the co-variability of precipitation and surface temperature (Tren-46

berth and Shea 2005; Gu and Adler 2011), and to assess the imbalance between global precipi-47

tation and evaporation (Schlosser and Houser 2007; Trenberth and Fasullo 2013). Datasets that48

are able to resolve monthly variability at sub-continental spatial scales are suitable for estimates49

of the global water cycle. For many other applications, higher temporal (sub-monthly) and spatial50

(< 100km) resolution is needed. Validation of model forecast precipitation requires data sets with51

similar or higher resolution to the model output which can range from a few kilometers to several52

degrees, and hourly to multi-day depending on the model used (Hamill 2012; Brown et al. 2012;53

Lindvall et al. 2013). For example, hourly resolution sets a good compromise between what is54

meaningful in models and useful for extremes. Station data are also used for model verification,55

but this approach depends on a high enough station density in the verification region (Gutowski56

et al. 2003). One of the fundamental outputs of land-surface models, soil moisture, is highly vari-57
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able in space and its spatial patterns depend strongly on the precipitation forcing the model even58

down to a resolution of 2km (McLaughlin et al. 2006). In general, for land-surface models at59

coarser resolutions (e.g. T382) hourly precipitation data are given as input and interpolated to60

the model time step of 15 or 20 minutes (Liu et al. 2011; Meng et al. 2012). Observed extreme61

precipitation events are usually highly localized in space and time, involving scales on the order62

of minutes to a few hours and several kilometers, especially in the tropics and during summer63

over land. For example, because of the transient nature of convection, resolving the very high64

rates in thunderstorms requires temporal resolution of hours or even minutes. To resolve the more65

extreme precipitation intensity events and accurately estimate the tails of the distribution, data at66

a resolution of ten minute intervals and about 1km thus might be needed (Haerter et al. 2010). To67

accurately identify the mean diurnal cycle, hourly time steps are desirable to resolve the evolution68

of precipitation throughout the day.69

Estimates of precipitation from individual rain-gauges exist in many locations, but these are70

point values and apply only for the location they were collected. Gridded rain-gauge based anal-71

yses of precipitation are available over the global land areas, with the estimates assumed to be72

representative for a given area. However, large land and especially oceanic areas on the globe73

are very sparsely covered by rain gauges. This is problematic, because in sparsely sampled areas,74

interpolation between rain gauge locations to obtain a gridded analysis will introduce errors. In75

addition, rain-gauge estimates are thought to underestimate precipitation rates due to under-catch76

in windy or snow conditions (e.g. Peterson et al. 1998; Adam and Lettenmaier 2003; Sevruk et al.77

2009; Rasmussen et al. 2012, and references therein). Another issue is that precipitation measure-78

ments are usually reported only once or twice a day, which affects the resolution of both rates and79

totals, because the longer the precipitation is left in the gauge the greater the potential is for some80

of it to evaporate. Other options for global precipitation estimates, that provide higher spatial and81
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temporal resolution, are based on satellite data. Most quasi-global high-resolution precipitation es-82

timates are available at 3 hours and 0.25◦ resolution. While some of these data sets have versions83

at 4km and 30 minute resolution, then, missing data is more of an issue which can be alleviated84

at the coarser resolution due to averaging. Data at 3 hours and 0.25◦ is marginally adequate to85

resolve the diurnal cycle (as mentioned above, hourly is better) and mesoscale systems but is still86

too coarse to resolve individual convective extreme events. Most satellite based data sets have time87

series of less than 15 years (with one recent exception, see section 2), which is not long enough88

to estimate trends or a robust climatology. Note also that the data sources used in many satellite89

based precipitation estimates change over time, mixing data source trends and real trends.90

Precipitation estimates from satellite retrievals are inferred from infrared (IR) or microwave91

(MW) measurements rather than measured directly. IR measurements, which tend to be from92

geostationary satellites have high spatial and temporal resolution, while MW or radar measure-93

ments are obtained from polar orbiting satellites with much sparser sampling (Wolff and Fisher94

2008). Global reanalyses offer another way to estimate global precipitation with the advantage95

that they synthesize many different data sources. However, while the underlying first-guess model96

is dynamically consistent, adjustments to assimilated data result in a product that is not neces-97

sarily mass or energy conserving. Precipitation in particular is often heavily dependent on the98

previous forecast cycle’s first-guess, which is contaminated by model bias. In addition, the spatial99

resolution is limited to that of the reanalysis.100

There are several important questions users of these data sets need to ask. The most important101

one is, obviously, which of these estimates is closest to the truth? There is no clear answer to102

this question. The conclusion of several precipitation inter-comparison projects was that no one103

methodology is superior to the others (Kidd and Huffman 2011). In an early study Smith et al.104

(1998) showed that for regional comparisons, uncertainty in the ground validation data can be105
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larger than the passive microwave (PMW) algorithm bias in many cases. They also showed that the106

differences in estimated rain rates are mainly due to how the more intense rain rates are calculated107

and how strict the screen (precipitating versus dry pixels) is.108

On monthly timescales for global analyses, Adler et al. (2001) show that merged analysis prod-109

ucts, using more than one satellite source and adjusted to rain gauges, are superior to single source110

products. Without the adjustment to rain gauges, large biases existed over the southern Great Plains111

in the US for the first generation of high-resolution precipitation products (HRPPs) (Sapiano and112

Arkin 2009). Even rain gauge-only data sets have large differences; in the context of drought,113

using one or another data set can result in an increase or decrease in the determination of drought114

conditions (Trenberth et al. 2014). The main conclusion from these studies is that there is no one115

best product, there is only the most appropriate product for a certain purpose. For example, studies116

at different locations and different seasons will likely benefit from using the product that has been117

shown to do well under those circumstances. If the emphasis is on consistency of precipitation118

with circulation patterns, then reanalysis products combined with observed precipitation may be119

the best choice. In addition, several other issues are not addressed in these previous studies, such120

as whether there are systematic biases among the HRPPs on the global scale. In all cases it is121

important for the user to know what the systematic differences are in the precipitation estimates of122

different products. In order to answer this question it is necessary to first quantify the differences123

among the data sets and the different estimation approaches. Are there biases particular to a certain124

approach to precipitation estimation? How do the distributions differ? And, given all the differ-125

ent estimates, is there a way to quantify the uncertainty associated with them? In terms of time126

series length, studies that deal with multi-annual assessments of precipitation are rare (Prat and127

Nelson 2015), which is why we focus on data sets with more than 10 years of overlap. And while128

there are numerous examples of local and regional comparisons between data sets (e.g. Gutowski129
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et al. 2003; Sohn et al. 2010; Kidd et al. 2012), here we focus on products that span the globe in130

longitude.131

The aim of this study is not to determine which precipitation data set is closest to the abso-132

lute truth, since that is impossible, but rather to identify strengths and shortcomings of the data133

sets, and to provide some guidance as to which estimates are likely to perform better in certain134

situations. Because distributions of precipitation are highly dependent on the resolution of the135

data used to compute them, then daily or higher temporal resolution is better suited for estimating136

distributions than monthly. Thus we are interested in global precipitation data sets with daily or137

higher resolution. The larger sample size and range of precipitation rates resolved by daily data138

lead to more accurate representation of the distributions.139

Section 2 introduces the data sets used in this study. Section 3 has the details of the statistics used140

to compare the precipitation estimates and how the distributions are computed. Section 4 evaluates141

the statistics and distributions, mostly on the example of North America, but other continental142

regions are mentioned to highlight stark differences or close similarities. Figures for all other143

continental regions are included in the supplementary material. Lastly, section 5 summarizes and144

discusses the implications of the results presented in this study.145

2. Data Sets146

Table 1 lists all of the precipitation data sets considered in this study. The lowest native reso-147

lution of all precipitation data sets under consideration here is GPCP1DD, which has daily data148

on a 1◦ grid. In order to facilitate comparisons of distributions and variability, all data sets were149

interpolated from their original grids to a grid with 1◦ spatial and daily temporal resolution us-150

ing conservative averaging. As temporal averaging is done to daily resolution, differences in the151

diurnal cycle phase and amplitude will not be resolved, so the resolved time scales that will be152
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considered are daily to interannual. Since the seasonal cycle has a large effect on precipitation, all153

analyses are performed for each month of the year separately.154

Our criteria (global data, daily resolution) exclude several well established precipitation esti-155

mates from this study, for reasons related to either their temporal resolution or their regional cover-156

age. These include PRISM (Daly et al. 1994), the North American regional reanalysis (Mesinger157

et al. 2006), stage IV radar data (Lin and Mitchell 2005), and Asian Precipitation - Highly Re-158

solved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE,159

Yatagai et al. 2012), because they are regional products, and the Global Precipitation Climatology160

Centre (GPCC, Becker et al. 2013) , GPCP monthly estimates (Huffman et al. 1997), CPC merged161

analysis of precipitation (CMAP, Xie and Arkin 1997) and CRU precipitation (Harris et al. 2014),162

because they are only monthly resolution.163

a. High-resolution precipitation products164

HRPPs aim to provide the best snapshot of precipitation estimates at high spatial and temporal165

resolution. Commonly, high-resolution infrared (IR) brightness temperatures from geostationary166

satellites are related to precipitation rates using the more accurate passive microwave (PMW)167

estimates from the polar-orbiting satellites. How these measurements are related, how the IR is168

calibrated, and whether the monthly means are scaled to match monthly rain gauge analyses varies169

between algorithms and constitutes the main sources of differences between the estimates; see170

Kidd and Huffman (2011) for an overview and an in-depth description of the various techniques.171

In general, PMW gives a more accurate estimate than IR, because this is a more direct observation172

of precipitation. But this advantage deteriorates for time averages due to the lower sampling173

frequency of PMW compared to IR. The combination of PMW and IR measurements includes174

the different errors inherent in each technique (Kidd and Huffman 2011). We note that there are175
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versions of these precipitation products with higher resolutions than used here. While a higher176

resolution would likely improve the results due to better sampling, it would not be advantageous177

for the comparisons presented here, because all data sets have been interpolated to match the178

lowest resolution data set available.179

The Climate Prediction Center morphing method (CMORPHv0.x, Joyce et al. (2004); Joyce180

and Janowiak (2005)) estimates rainfall by combining IR and PMW measurements. High-quality181

PMW rainfall estimates are propagated (using linear interpolation in time) by motion vectors de-182

rived from high frequency IR imagery. CMORPH is available from 2003-current at 3-hourly183

intervals on a 0.25◦ grid from 60◦S to 60◦N. A bias corrected version (CMORPHCRTv1.0, Joyce184

et al. (2004); CMORPHv1.0 (2015)) is also available on the same grid, from 1998-2015. CMOR-185

PHCRTv1.0 uses a consistent algorithm and is bias corrected against a rain gauge analysis over186

land and GPCP pentad data over the ocean. Correction over land is done by matching probability187

density functions against daily gauge analysis using optimal interpolation with orographic cor-188

rection. The bias correction results in a reduction of the spurious trends seen in CMORPH. For189

better visualization, results are shown for CMORPHCRTv1.0 only and results for CMORPH are190

mentioned where appropriate. Both products are also available at a resolution of 8km and 30min,191

but the higher resolution is not necessary for the analysis presented here.192

The Tropical Rainfall Measuring Mission (TRMM3B42) 3B42v7 product, provides 3-hourly193

precipitation estimates on a 0.25◦ grid between 50◦S to 50◦N and from 1998 to present. The194

monthly means of the 3-hourly microwave-calibrated IR rainfall estimates are combined with195

the Global Precipitation Climatology Centre (GPCC) monthly rain-gauge analysis to generate196

a monthly satellite-gauge combination (TRMM3B43). Each 3-hourly field is then scaled to197

sum to the corresponding monthly satellite-gauge field. Like all satellite precipitation estimates,198
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TRMM3B42 was previously determined to have large relative errors at small precipitation rates,199

however time/area averaging significantly reduces the random error (Huffman et al. 2007, 2012).200

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-201

works (PERSIANN) precipitation estimates are based on IR from geostationary satellites. In202

addition, PMW measurements from the TRMM satellite are used to update the artificial neural203

networks algorithm parameters (Hsu et al. 1997; Sorooshian et al. 2000; Braithwaite 2000). PER-204

SIANN is available from 2001-present at 3-hourly intervals on a 0.25◦ grid from 50◦S to 50◦N.205

b. Climate data records of precipitation206

For climate data records (CDRs) homogeneity is emphasized over instantaneous accuracy. The207

Climate Prediction Center (CPC) rain-gauge (GAUGE) data set is based on quality-controlled sta-208

tion data from more than 30000 stations. These data are then interpolated to create analyzed fields209

of daily precipitation with bias correction for orographic effects (Xie et al. 2007). Note that daily210

gauge data typically has different ending times in different regions and that daily readings tend to211

be in the morning. The global analysis is available daily on a 0.5◦ grid from 1979-2005 (Xie et al.212

2007; Chen et al. 2008; Xie 2009). The real-time version of the CPC gauge data set (GAUGERT)213

uses about 17000 stations and is available on the same grid at the same time resolution from 2005-214

present. Large scale averages of long term means and variances are comparable between GAUGE215

and GAUGERT. Additional stations used in the GAUGE estimate are generally located in regions216

of dense observing networks. In regions with sparse observations the number of stations stays217

about the same from GAUGE to GAUGERT. Because of this GAUGE and GAUGERT estimates218

are combined by extending the GAUGE data with the GAUGERT data and the resulting data set219

is referred to as GAUGE+RT.220
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Global Precipitation Climatology Project (GPCP1DD, v1.2) daily, 1◦ precipitation estimates221

between 40◦S-40◦N are computed based on the threshold-matched precipitation index (TMPI)222

(Huffman et al. 2000). Outside of that, the developers use an adjusted Susskind TOVS/AIRS223

cloud volume proxy (Susskind et al. 1997). For the TMPI, IR temperatures are compared to a224

threshold, and all cold pixels are given the same conditional precipitation rate, with threshold and225

conditional precipitation rate set locally by month. GPCP1DD monthly means are normalized to226

match the monthly GPCP satellite-gauge precipitation estimate version 2.2 (Adler et al. 2003),227

which is based on satellite data and rain-gauge analysis from the GPCC. The GPCC monthly rain228

gauge analysis is bias corrected to account for systematic errors due to wetting, evaporation, and229

aerodynamic effects (Huffman et al. 1997), similarly to what was described above for the CPC230

rain gauge analysis. The GPCP1DD v1.2 daily, 1◦ precipitation estimates are available on a global231

grid from 1996-October 2015 (Bolvin 2001).232

One of the newest CDRs is the Precipitation Estimation from Remotely Sensed Information233

using Artificial Neural Networks - Climate Data Record (PERSICDRv1r1, v1r1, Ashouri et al.234

2015; Sorooshian et al. 2014). This is generated using the PERSIANN algorithm, and adjusted235

using the GPCP monthly product to match monthly precipitation rates on a 2.5◦ grid between236

the two products. In contrast to the HRPP PERSIANN, the PERSICDRv1r1 model is pretrained237

on stage IV hourly precipitation data and the model parameters are then kept fixed for the full238

historical record of IR data. PERSICDRv1r1 is available on a 0.25◦ grid between 50◦S to 50◦N239

and from 1983 to present day.240

c. Reanalysis precipitation products241

Another way to estimate global precipitation is through short-term forecasts provided by global242

reanalyses. The underlying models assimilate a wide variety of observations, but in general not243
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precipitation measurements or analyses. Precipitation is usually provided by a prior short-range244

forecast, and this inherits the systematic errors of the forecast model. The advantage to reanalyses245

is that all variables are dynamically consistent to some extent. However, as precipitation data246

are not typically constrained by the analysis procedure, reanalyzed precipitation is highly model247

dependent (Trenberth et al. 2011). This is particularly true in the tropics and over continents248

during the summer, when convective precipitation dominates. These issues are compounded by249

the well-known problem in General Circulation Models (GCMs) of an over-abundance of light250

rainfall and too infrequent extreme precipitation (e.g. Trenberth et al. 2003; Wilcox and Donner251

2007; Stephens et al. 2010). As global reanalyses are based on similar GCMs they tend to have252

the same short-comings in this respect. One exception is the North American Regional Reanalysis253

(Mesinger et al. 2006), which does assimilate precipitation. There is evidence that assimilation254

of precipitation can improve precipitation estimates and the atmospheric moisture budget (Ruane255

2010a,b; Kennedy et al. 2011) and the forecast of other variables (Lien et al. 2015).256

The decrease of precipitation variability with spatial averaging implies that to facilitate com-257

parison of reanalyses with the other precipitation estimates, the reanalyses must be generated at258

the same or higher resolution as the other estimates. Lower-resolution reanalyses previously have259

been found to have lower rain rates and a smaller range of resolved rain rates overall when com-260

pared to satellite or gauge based estimates, similar to operational forecast models (Janowiak et al.261

2010). This is valid even when area averaging (and thus decreasing the variability of) the ob-262

servational estimates to the same resolution as the reanalyses. We obtained similar results when263

applying our analysis to lower resolution reanalyses. Here we consider the most recent global264

reanalysis products which have a spatial resolution of smaller than 1◦. These are the European265

Centre for Medium-Range Weather Forecasting (ECMWF) ERA-Interim reanalysis (ERAI Dee266

et al. 2011a,b), the Modern-Era Retrospective Analysis for Research and Applications (MERRA267
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Rienecker et al. 2011a,b), MERRA Version 2 (MERRA2 Bosilovich et al. 2015a,b), the NCEP268

Climate Forecast System Reanalysis (CFSR Saha et al. 2010a,b), and the Japanese 55-year Re-269

analysis (JRA55 Kobayashi et al. 2015b,a).270

d. Caveat on independence of precipitation estimates271

None of the above precipitation estimates is independent of all the others, for there is a large272

degree of overlap in the source data that goes into the different estimates (Table 1). PER-273

SIANN and CMORPH are the only satellite products without routine inclusion of gauge data.274

Both TRMM3B42 and GPCP1DD use the same monthly satellite-gauge combination algorithm275

(Huffman et al. 1997) to constrain their monthly totals. As mentioned above, the GAUGE and276

GAUGERT estimates are for non-overlapping time periods and use a different total number of277

stations, but the underlying algorithm is the same. Their statistics compare very well even though278

only about half the number of stations are available for the real-time product GAUGERT (17000279

compared to 30000 for the retrospective GAUGE analysis).280

3. Methods281

The first step, before any other analysis is done, is to interpolate all data sets from their original282

grids to a coarser grid with 1◦ spatial and daily temporal resolution using conservative averaging.283

All computations shown in this study are done on the regridded data sets in an attempt to minimize284

the impacts of differing resolution on the results.285

The methods used to evaluate the precipitation estimates include basic statistical quantities such286

as means and variances, and the differences among estimates at each grid point (Table 2). We also287

show the mean and variance differences as percentage of the mean and variance respectively to288

compare their relative sizes. In addition we consider temporal averages on time scales of a week,289
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a month and a year. Spatial averages are always area averages, taking into account the change in290

grid area with latitude.291

Frequency distributions of precipitation are highly skewed, with the smallest rain rates being the292

most frequent (e.g. Sardeshmukh et al. 2015). In general this makes comparing different distri-293

butions difficult, because the tails tend to be under-sampled. One way to reduce the discrepancy294

between the number of samples in the lower rain rate bins and the higher rain rate bins is to use295

logarithmic bin sizes that increase with rain rate. In addition to frequency distributions of precipi-296

tation rate we also compare rain amount by rain rate distributions. The integral under these curves297

is equal to the total precipitation amount. These distributions tend to be skewed towards lower298

precipitation rates with the largest amounts occurring at intermediate rain rates. For both types of299

distributions a logarithmic bin size is used. The number of bins is 100 with a constant logarithmic300

(to base 10) bin length. Setting the minimum bin to 10−4 and the maximum to 10mm h−1, the301

bin length then becomes 4b =
(
log10 10− log10 10−4)/100 = 0.05. The edges of the bins are302

computed according to bi = 10−410i4b, i = 0, ..,100, which results in increasing bin sizes with303

precipitation rate. Rain rates below the minimum (including zero rain rates) are counted in the304

lowest bin. Experiments with changing the minimum bin to 10−3 and 10−2 show that the bulk of305

the distribution is not very sensitive to the lower bound.306

Global maps of the spread among precipitation data sets (Table 2) can be used to identify regions307

with more or less variability among the data sets. First the mean seasonal cycle is removed from308

each data set. The spread is then computed as the standard deviation among data sets at each grid309

point and time which is then averaged for each month of the year.310
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4. Results311

The continental regions used in the analyses are defined as the land areas contained within the312

latitude-longitude areas given in Table 3. All results presented are for data interpolated to match313

the GPCP1DD 1◦, daily resolution.314

a. Annual cycle315

A summary of the annual cycle is given in Figs. 1 and 2 in form of its amplitude and phase. The316

annual cycle is defined as the first 4 harmonics of the mean daily seasonal cycle. Differences in317

the amplitude are large over equatorial Africa and South America, and the Indian Monsoon region.318

Over North America the amplitude of the annual cycle in the Midwest of the Unites States ranges319

from 3 to 13mm d−1. The phase is defined as the day of the year the annual cycle is maximized,320

and so does not take into account if a location has multiple maxima in precipitation during the year.321

This is potentially an issue in equatorial South America and Africa, although overall the timing of322

the reported annual maxima in precipitation is captured consistently among the estimates. Regions323

with large discrepancies in timing are northern Africa, parts of Australia (both regions where the324

annual cycle amplitude is very small), and the northwestern United States (Fig. 2).325

b. Differences in means and variances326

To compare patterns of monthly means and variances it was convenient to choose one of the data327

sets to compare with the others. We chose GPCP1DD, not because it is the most accurate daily328

precipitation estimate, but because it is widely used and readers may have more familiarity with329

this than other data sets. GPCP1DD also has the most extensive time coverage except for PER-330

SICDRv1r1, which is a newer product. In addition, GPCP1DD is the only precipitation estimate331

that is truly global.332
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Distinctive differences among data sets of large-scale patterns of means and variances can be333

identified. The climatological mean monthly precipitation for July is shown in Fig. 4. Comparison334

of the mean monthly precipitation across data sets shows large variability (Fig. 4b-d), especially335

in areas like the Intertropical convergence zone (ITCZ). Other regions with large differences in the336

means are continental areas in the summer hemisphere and the western boundary ocean current337

regions. Because of large spatial gradients in some regions, small variations in the location of338

climatological features like the ITCZ can lead to large local differences in mean precipitation.339

Figures 4c,d and 5c,d show that GPCP1DD mean precipitation exceeds mean precipitation340

from the satellite-only product PERSIANN especially over the oceans, except in regions with341

intense convective precipitation. The bias corrected CMORPHCRTv1.0 has small differences to342

GPCP1DD comparable to GAUGE+RT. In particular, CMORPHCRTv1.0 exceeds GPCP1DD343

over tropical oceans, and GPCP1DD exceeds CMORPHCRTv1.0 over tropical land areas and344

over the midlatitudes in winter. As is to be expected based on previous work, TRMM3B42 and345

GPCP1DD match well over land, but TRMM3B42 commonly has higher means over tropical346

oceans and smaller means over midlatitude ocean areas (Fig. 4b). The closest match is be-347

tween GPCP1DD and PERSICDRv1r1 monthly means (Fig. 4f), where any differences are below348

0.075mm d−1. This is to be expected based on the construction method used in GPCP1DD and349

PERSICDRv1r1. The satellite-only product PERSIANN has higher means over summertime con-350

tinental regions than the gauge corrected estimates. Over land the main bias for gauge-corrected351

precipitation estimates is due to the bias in the rain gauge analysis used. This is visible in the352

differences between GPCP1DD monthly means and GAUGE+RT monthly means (Figs. 4e and353

5e), where the rain gauge analysis that contributes to GPCP1DD is bias corrected for losses due354

to wetting, evaporation, or aerodynamic effects, and the CPC GAUGE+RT analysis is corrected355

for orographic effects. Comparing the July estimates to January it becomes clear that PERSIANN356
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tends to underestimate winter precipitation over continents and overestimate summer precipita-357

tion when compared to GPCP1DD. GAUGE+RT estimates are biased low on average, but not358

everywhere compared to GPCP1DD, and TRMM3B42 typically exceeds GPCP1DD in regions of359

vigorous convection.360

Percentage differences of the monthly means (Fig. 6) show clearly that the differences in the361

means are often as large as the means. This is especially true in areas with small mean values362

like the subtropical dry zones, where small differences translate into large percentage differences.363

Depending on the data set under consideration, this can also be the case in regions with large mean364

precipitation and large variability like the continental US in the summer and the edge of the ITCZ365

(e.g. GPCP1DD and PERSIANN (Fig. 6d)).366

Monthly mean daily precipitation variance is large where mean precipitation is large (Figs. 4a367

and 7a). The largest variances are in areas with highly variable convective precipitation such as the368

ITCZ, the Indian Ocean, and the Indian Monsoon region. TRMM3B42 and CMORPHCRTv1.0369

have the largest variance on average (Fig. 7b,c), and differences in variances are as large as the370

variance for most areas of the globe (not shown). This holds even for areas with large variability,371

like the ITCZ. That magnitudes of spread and mean should correlate is to be expected for a positive372

definite quantity like precipitation, but the magnitude of the difference in variance among data sets373

is notable. The combined rain gauge data set GAUGE+RT shows smaller variance than GPCP1DD374

(Fig. 7e and 8e) over boreal winter land areas and the opposite during boreal summer. Results are375

more mixed over South America, Africa and Australia. PERSICDRv1r1 variance is smaller than376

GPCP1DD variance over land, but exceeds GPCP1DD variance over the ocean. Note, however,377

that differences in variance are smaller between PERSICDRv1r1 and GPCP1DD than for any378

other data set Fig. 7f and 8f). While small differences between the means of PERSICDRv1r1 and379

GPCP1DD are to be expected, that does not hold for daily variance. While CMORPHCRTv1.0380
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has the larger variance for most regions, Figs. 7c and 8c show that GPCP1DD variance is higher381

in the winter hemisphere.382

c. Time Series383

Next, we examine time series at the continental scale for North America, where there is a rela-384

tively dense observing network and so the potential for constraining estimates is high. Time series385

averaged over North America are also a good example in that they illustrate many of the issues386

also observed in other regions. Other regions (Table 3) are mentioned where notable, but these387

results are not shown. Figures for all other regions are included in the supplementary material.388

Figure 3 and Table 3 also include the amplitude and phase of the mean seasonal cycle averaged389

over each continental region. The minimum and maximum amplitude estimated by the different390

products in general differ by a factor of 1.5−3. The timing of the seasonal cycle is estimated to be391

within 30 days of each other for North America, Asia, Australia and the maritime continent, but392

for Europe the estimates differ by 46 days. Note that the outliers for the timing are not necessarily393

from the reanalyses. For North America GAUGE+RT and for Europe PERSIANN each place the394

maxima of the annual cycle earlier in the year than the other estimates. South America and Africa395

have two maxima in the seasonal cycle, and there is disagreement among data sets on which of396

these dominates.397

The temporal evolution of global land-averaged precipitation rates on annual and monthly398

timescales are shown in Fig. 9. The interannual variability that can be seen in the annual399

means is somewhat consistent among most data sets, although there appears to be an offset of400

0.5−1mm d−1 between the estimates (Fig. 9a), and this decreases to 0.3mm d−1 when anomalies401

from the seasonal cycle are considered (not shown). The outliers for annual averages are PER-402

SIANN and to a lesser degree MERRA2 and CFSR. CFSR appears to have a positive trend from403
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2001 to 2010 not seen in the other estimates; this is mostly due to trends over South America404

and Africa (not shown) and can be related to the changing observing system (Trenberth et al.405

2011). Previous studies have shown that precipitation from reanalyses that assimilate moisture406

from satellite observations are strongly affected by changes in the observing system and result in407

spurious trends in the precipitation estimates (Trenberth et al. 2011). PERSIANN has anomalously408

high rain rates from late 2006 to early 2007 and anomalously low rates in late 2005 and early 2008409

(Fig. 9b). Over the global ocean the differences among annual averages are larger, up to 2mm d−1,410

and the reanalyses have a small but significant upward trend not seen in the GPCP1DD, PERSIC-411

DRv1r1 and TRMM3B42 estimates (not shown). PERSIANN in contrast has a negative trend over412

the ocean.413

Figure 10a shows that GAUGE+RT estimates lower precipitation rates over North America than414

GPCP1DD which matches what was observed in the monthly mean maps (Figs. 4 and 5). The415

only observational estimate with lower estimates over North America is CMORPHCRTv1.0. The416

timing of the seasonal cycle over North America is captured more or less consistently by all es-417

timates (Fig. 10b), but the amplitude is not. CMORPHCRTv1.0 and PERSIANN underestimate418

winter precipitation rates relative to other analyses by up to 1mm d−1 on monthly time scales,419

while ERAI under-estimates summer precipitation rates. On weekly time scales the differences420

can be as large as 3mm d−1 in the winter, with PERSIANN estimating < 0.5mm d−1 and all other421

estimates averaging between 2.5−3mm d−1 (Fig. 10c). This large difference illustrates a known422

issue with PERSIANN and other satellite-only products. Several studies have shown that winter-423

time precipitation is severely underestimated in these products for different regions in the northern424

midlatitudes (Sapiano and Arkin 2009; Sohn et al. 2010; Kidd et al. 2012). Relative differences425

over North America in the summer are of the same order as over the maritime continent, even426

though total amounts are much larger over the maritime continent.427
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To assess the consistency of the time evolution among the data sets, we consider correlations on428

annual, monthly and daily time scales with GPCP1DD and GAUGE+RT. One note of caution is429

necessary for interpreting the annual time scale results. The time series of annual means only have430

12 data points from 2001-2012. This severely limits the sample size and leads to unstable estimates431

of the correlations on annual time scales. We show results for correlation with GPCP1DD only, but432

mention how these compare with correlations with GAUGE+RT. Note that, as mentioned earlier,433

these two data sets are both strongly dependent on rain gauge analyses and therefore make use434

of the same data to some degree. This also holds for several of the other precipitation estimates.435

Correlations of the time series of continental mean precipitation anomalies with GPCP1DD reveal436

large positive correlations on annual, monthly and daily time scales for some data sets, such as437

TRMM3B42 and PERSICDRv1r1 in particular (Table 4). For other data sets the correlations were438

generally not significantly different from zero on annual and daily timescales (e.g. PERSIANN),439

but they were on monthly time scales.440

Results for reanalyses are mixed. Correlations on annual timescales are not significant for 3441

reanalyses over North America (JRA55,CFSR and ERAI), but these exceed 0.79 for all reanal-442

yses over Europe, the maritime continent (except MERRA2) and Australia. Meanwhile, corre-443

lations remain fairly high for both monthly and daily timescales. Comparison of correlations444

with GAUGE+RT instead of GPCP1DD (not shown) reveal that for North America on annual445

time scales all data sets except PERSIANN have correlations higher than 0.8 with GAUGE+RT.446

Over Europe the data sets having higher correlation with GPCP1DD are TRMM3B42, PER-447

SICDRv1r1, MERRA and ERAI, and data sets with higher correlation with GAUGE+RT are448

CMORPHCRTv1.0, MERRA2 and CFSR. On monthly time scales both CMORPHCRTv1.0449

and MERRA2 correlate better with GAUGE+RT, while all other data sets correlate better with450
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GPCP1DD. For daily data correlations, those between GPCP1DD and all other data sets are higher451

than those for GAUGE+RT, with the exception of the reanalyses over Europe.452

The low correlations of large scale (continental to global) annual averages indicate widely vary-453

ing estimates of their interannual variability. Imbalances on these scales of this important compo-454

nent of the global water cycle affect our ability to close the water budget (Trenberth et al. 2007,455

2011), because these would need to be balanced by evaporation or runoff. Global land differences456

on annual time scales are about 0.8mm d−1 for the observational estimates. In terms of latent457

heat release this translates to differences of up to 23.2W m−2, which is comparable to the global458

land latent heat flux of 38.5W m−2 estimated by Trenberth et al. (2009). Including the reanalyses459

increases the offset to 1mm d−1.460

d. Distributions461

In this section, we examine area-averaged precipitation distributions by season. The general462

behavior of these distributions is very similar among the continental areas. When plotted on a log-463

log scale (shown in the supplementary material), the distribution curves have two distinct slopes,464

positive for low rain rates and negative for higher rain rates. The transition between these slopes465

is more abrupt in the summer and more gradual in the winter months for North America (Fig.466

A.47). For Africa and the maritime continent, the transition is abrupt for all months (Figs. A.48467

and A.52). This relationship appears to hold for all continental areas during the summer months468

when precipitation tends to be in a more convective regime, which leads us to speculate that the469

manner of transition between slopes could be related to the dominant precipitation regime (large-470

scale vs. convective). While the location of where the slopes change in the log-log plot is around471

0.5mm h−1 for all seasons and regions, the slopes are quite variable between months, data sets and472

regions.473
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Fig. 11 shows the area-averaged seasonal distributions for North America. At the lowest pre-474

cipitation rates, CMORPHCRTv1.0 has a positive bias, with lower rain rates being more common475

than in other reanalyses or observational data sets. This is consistent with all other continental476

areas except Africa and Australia. This low precipitation rate bias can also be seen in the older477

version of CMORPH that has not been bias corrected. Over Australia, ERAI has a high bias at low478

rain rates in austral summer and PERSIANN in austral winter. ERAI distributions over Australia,479

Africa and Asia are bimodal, unlike the other precipitation estimates. The bulk of the distribution480

is between 0.01− 1mm h−1, with the peak in the distribution shifting between 0.015mm h−1 in481

the winter and 0.5mm h−1 in the summer for North America (Fig. 11c). In general, reanalyses,482

and ERAI in particular, dominate the distribution at these rates. For midlatitude continental re-483

gions, CMORPHCRTv1.0, and PERSIANN to a lesser degree, are much less likely than other484

products to have precipitation occur at the intermediate rates 0.01−1mm h−1. Fig. 12 examines485

the differences in the tails of the precipitation distributions. Overall reanalyses tend to not produce486

very high rain rates, with the exception of MERRA2. This could be because of the grid area vs.487

point estimate, the convective parameterizations used, or the relatively large grid size. For North488

America in the winter TRMM3B42 has the highest rain rates and highest probability of high rates489

occurring (Fig. 12a). In the summer (Fig. 12c) the satellite-only estimates dominate at the highest490

rain rates. For other regions MERRA2 dominates the tails in South America, Africa and the mar-491

itime continent (not shown). The satellite-only product, PERSIANN, tends to accentuate the tail492

of the distribution during summertime convective precipitation regimes. During months when pre-493

cipitation is dominated by synoptic systems or when the ground is covered in snow (e.g. Europe in494

the winter months) the tails of the distributions of PERSIANN are even lower than the reanalyses.495

A different way to compare the data sets is through the distribution of the rain amount by rain496

rate (Fig. 13). Precipitation amount distributions tend to be skewed in a logarithmic plot, with a497

22



long tail towards lower rain rates. Rain rates below 0.01mm h−1 are very common, but the actual498

rain amount from precipitation at these rates does not add up to much. During the winter months499

(Fig. 13a), the distributions for CMORPHCRTv1.0 and PERSIANN are much flatter, and the500

mean total precipitation amount of CMORPHCRTv1.0 in DJF is 29mm, whereas it is 56mm for501

GPCP1DD and 66mm for CFSR. That is a difference of more than 200% for the mean seasonal502

total estimate. Excluding CFSR, which has been shown to overestimate moisture transport from503

ocean to land and where at least some of the precipitation over land is due to the analysis increment504

(Trenberth et al. 2011), there is still a factor of 2 difference. On the other hand, in summer (Fig.505

13c), PERSIANN has many high rain rate events compared to the other estimates, and the seasonal506

mean totals are correspondingly higher than the other estimates, confirming what was already seen507

in the time series results. One thing to note about the reanalysis estimates is that the rain amount508

distributions tend to be narrower than the satellite and rain gauge estimates. This is most obvious509

for ERAI (Fig. 13c) and becomes more severe for reanalyses with a coarser spatial resolution (not510

shown), highlighting the fact that reanalyses only resolve a narrow band of rain rates. One notable511

exception to this is MERRA2, which has equally high rain rates as PERSIANN. While this may512

lead to positive results in midlatitude regions, it leads to estimated precipitation totals that are too513

large (compared to the other estimates) by a factor of 2 over the maritime continent.514

5. Summary and Discussion515

A comparison of several global precipitation estimates and reanalyses was performed on a range516

of temporal and spatial scales. Only data sets with daily or higher temporal resolution were con-517

sidered. To minimize differences in the data sets due to resolution, all data sets were interpolated518

to match that with the coarsest resolution (GPCP1DD). We found that while patterns of means and519
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variance were largely consistent among data sets, the differences in means and variances between520

the data sets were often as large as the analyzed means and variances themselves.521

Correlations among the precipitation estimates averaged over continental areas varied signifi-522

cantly. GPCP1DD, TRMM3B42 and PERSICDRv1r1 were very highly correlated. This was by523

construction on monthly and annual time scales, since all three data sets are bias corrected to524

monthly satellite - rain gauge analyses. These use, and tend to be dominated by, the same GPCC525

analysis, with the same undercatch-correction applied in all cases. This conclusion also carried526

over to daily averages. Correlations of the satellite-only product, PERSIANN, with GPCP1DD527

were generally not significantly different from zero on annual and daily timescales, but they were528

on monthly time scales. Reanalyses had high correlations with GPCP1DD on monthly time scales,529

but the results were mixed for annual averages. Correlations between reanalyses and GPCP1DD530

were found to be larger than 0.8 over Europe and Australia, but results were mixed over North531

America. This is noteworthy, because North America is one of the best observed regions in the532

world, and thus the potential for constraining reanalyses with observations is high. It is also in-533

teresting to note that annual correlations with GAUGE+RT were comparable and larger than 0.79534

for Europe, Australia and North America. This difference in the correlations with GPCP1DD ver-535

sus GAUGERT in data dense regions could reflect a difference in the data sources the different536

products assimilate.537

The time scale dependence of the correlations permits speculation on some aspects of these pre-538

cipitation estimates at different scales. The nature of the correlations, which are low at annual539

and daily, and higher at monthly time scales for time series averaged over large regions, could be540

interpreted to suggest that bias differences are large compared to interannual variability and ran-541

dom errors are large at daily time scales, but that at intermediate time scales (monthly in this case)542

the signal to noise ratio can be large enough to result in high correlations. It would also appear543
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that monthly bias corrections increase daily correlations (e.g. PERSICDRv1r1 and TRMM3B42544

correlations with GPCP1DD), possibly suggesting that the low correlations on daily time scales in545

satellite-only products are a result of random errors and monthly bias.546

Distributions of precipitation rates and amounts confirmed a known bias in satellite-only esti-547

mates and showed that PERSIANN underestimated wintertime precipitation in midlatitudes, while548

overestimating midlatitude summertime precipitation. Reanalyses tended to precipitate over too549

narrow of a range of rain rates when compared to observational estimates, although some of the550

reanalyses (JRA55 and MERRA2) estimate mean monthly totals in the same range as or even551

above PERSIANN in the summer. The difference (at least for North America) is that the bulk of552

the rain in the satellite-only estimate PERSIANN comes from high rain rates > 2mm h−1, while553

JRA55 overestimation occurred at rain rates centered around 0.8mm h−1.554

Average spread among data sets was computed for each grid point, and is defined as the average555

of the standard deviation of anomalies from the seasonal cycle. Spread among data sets differed556

between reanalyses and satellite estimates (Fig. 14). Spread among reanalyses was found to be557

larger in the tropics and smaller in midlatitudes when compared to the spread among satellite558

estimates. This is likely related to midlatitude precipitation being driven mainly by the large-scale559

flow, with convective precipitation dominating the tropics. Reanalyses do well in representing mid-560

latitude large-scale circulation patterns and this results in higher consistency across reanalyses in561

the mid-latitudes. In the tropics convective parameterization was likely responsible for the bulk of562

the precipitation in reanalyses; these parameterizations differed widely among reanalyses and so563

did their precipitation estimates.564

Systematic differences were found in the global precipitation estimates considered in this study.565

Users of these estimates need to be aware of these biases and their use as a ground truth should566

be limited to regimes, seasons, or regions in which the products have been shown to perform567
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well for. For example, PERSIANN and CMORPH, designed to represent the instantaneous vari-568

ability in precipitation, performed well in the tropics, but overestimated summertime convective569

precipitation and underestimated wintertime precipitation in midlatitudes. This suggests that the570

performance of CMORPH and PERSIANN in midlatitude regions always needs to be assessed for571

the region and season of interest prior to using these estimates.572

Precipitation from reanalyses is still first and foremost a model product, influenced by observa-573

tions through data assimilation, and reflects the systematic errors of the global circulation models574

used to provide the forecast background. There is a clear bias of the reanalyses’ annual and575

monthly means compared to the observational estimates. However, while we showed here that576

large scale (continental to global) annual averages of precipitation estimates differ in their interan-577

nual variability, variability estimated by reanalyses on monthly timescales tends to be consistent578

with the observational estimates (as seen from the high correlations). This suggests that studies579

focused mainly on the variability of precipitation may have a more reliable foundation in using580

reanalyses than studies investigating the energy and water budgets.581

In summary, any study using precipitation estimates based on observations or reanalyses should582

take into account the uncertainty associated with the precipitation estimate. There is no one global583

precipitation product that is better than all the others for all applications. The most suitable product584

changes with intended application, location and season. Therefore, care needs to be taken when585

choosing a product for a specific application, to ensure that the product has the capability to yield586

useful results. Given the uncertainty inherent in any precipitation estimate it is an asset to have587

several products based on different approaches available to compare and estimate that uncertainty.588

In some ways precipitation estimates from satellite and reanalyses have the opposite problem.589

Satellite estimates perform well in regions and seasons with convective precipitation, while re-590

analyses are better at large scale precipitation in the midlatitudes. Precipitation estimates that in-591
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corporate both satellite and ground-based measurements such as GPCP1DD, CMORPHCRTv1.0592

and indirectly TRMM3B42 and PERSICDRv1r1, tend to lie in between the other estimates both593

in terms of the distributions and the average rain rates. Incorporating quality-controlled ground594

radar in precipitation estimates where available can be expected to have a positive impact on the595

accuracy of the estimates. Including data from diverse sources (multiple satellites and retrieval596

channels, rain gauge, radar) appears to help with reducing errors and enhances reliability. Ex-597

tending the rain gauge network to data sparse regions, in particular over oceans, will likely have598

a large impact on constraining at least global mean precipitation estimates. Unfortunately, this is599

impractical and costly. A more practical approach may be to combine precipitation estimates from600

several different data sources based on their respective strengths.601
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TABLE 1. List of precipitation estimate data sets. Sources are geostationary infrared (Geo-IR), microwave

(MW), gauges, or reanalyses. Only the main data set reference is given for each data set. Additional references

and references with links to the actual data sets are included with the description of the data sets in section 2.

842

843

844

Name Source Temporal coverage Spatial coverage Reference

and resolution and resolution

TRMM3B42 Geo-IR; MW from SSM/I,TMI, 1998 - 2012, 49◦S - 49◦N Huffman et al. (2007)

AMSU, AMSR; gauges 3 hourly 0.25◦

CMORPH Geo-IR; MW from SSM/I,TMI, 2003 - 2013, 59◦S - 59◦N Joyce et al. (2004)

(V0.x) AMSU, AMSR; 3 hourly 0.25◦

CMORPHCRTv1.0 Geo-IR; MW from SSM/I,TMI, 1998 - 2013, 59◦S - 59◦N Joyce et al. (2004)

(V1.0) AMSU, AMSR; 3 hourly 0.25◦

PERSIANN Geo-IR; MW from TMI 2001 - 2013, 59◦S - 59◦N Hsu et al. (1997)

3hourly 0.25◦ Sorooshian et al. (2000)

PERSICDRv1r1 Geo-IR; MW from TMI (for training) 1983 - 2013, 60◦S - 60◦N Ashouri et al. (2015)

(V1.R1) SSM/I; IR; gauges daily 0.25◦

GPCP1DD Geo-IR; AVHRR low-earth-orbit IR, 1997 - 2013, global, 1◦ Huffman et al. (2000)

SSM/I; gauges; daily

TOVS (poleward of 40S-40N)

GAUGE gauges 1979 - 2005, daily global land, 0.5◦ Xie et al. (2007); Chen et al. (2008)

GAUGERT gauges 2006 - 2013, daily global land, 0.5◦ Xie et al. (2007); Chen et al. (2008)

JRA55 Reanalysis 1979 - 2013, 3hourly global, gaussian 0.5625◦ Kobayashi et al. (2015b)

MERRA Reanalysis 1979 - 2013, hourly global, 0.5◦ x 2/3◦ Rienecker et al. (2011a)

MERRA2 Reanalysis 1980 - 2015, hourly global, 0.5◦ x 0.625◦ Bosilovich et al. (2015a)

CFSR Reanalysis 1979 - 2010, 6hourly global, 0.5◦ Saha et al. (2010a)

ERAI Reanalysis 1979 - 2013, 3hourly global, 0.75◦ Dee et al. (2011a)
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TABLE 2. Description of the metrics used in the analysis. P(x,y,d,m,yr) is precipitation at longitude x,

latitude y, day d, month m, and year yr. Nm is the total number of days in month m, m = 1, ...,12. NA is the

number of grid points in region A with (xi,y j) ∈ A. w j are the weights that account for changing area of the grid

box with latitude. P1, ...,PNd are the different data sets, with Nd the total number of data sets. M is the mean of

all the precipitation data sets.

845

846

847

848

849

Metric

Monthly mean P̄(x,y,m) = 1
Nm

∑
N
yr=1 ∑

Nmy
k=1 P(x,y,dk,m,yr)

Monthly variance σ2(x,y,m) = 1
Nm

∑
N
yr=1 ∑

Nmy
k=1(P(x,y,dk,m,yr)− P̄(x,y,m))2

Difference D(x,y,m) = P̄(x,y,m)− Q̄(x,y,m)

Percentage difference D(x,y,m) = P̄(x,y,m)−Q̄(x,y,m)
P̄(x,y,m)

∗100

Spatial average PA(d,m,yr) = 1
NA

∑
NxA
i=1 ∑

NyA
j=1 w jP(xi,y j,d,m,yr)

Spread among data sets σP(x,y) = 1
Nt

∑
Nt
k=1

√
1

Nd
∑

Nd
d=1(Pd(x,y, tk)−M(x,y, tk))2
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TABLE 3. Description of continental regions used in the analysis. Only points over land inside the domains

are used. Also shown are the amplitude (mm d−1) of the area averaged mean annual cycle for 2001-2012 and the

phase (the day of the year the maximum occurs). The annual cycle is defined as the first 4 harmonics of the mean

daily annual cycle. These are given for all data sets in the order (TRMM3B42, GPCP1DD, CMORPHCRTv1.0,

PERSIANN, PERSICDRv1r1, GAUGE+RT, JRA55, MERRA2, CFSR, ERAI). The minimum and maximum

are highlighted in bold.

850

851

852

853

854

855

Region lon-lat Amplitude Phase

North America 165◦W - 50◦W (1.47,1.19,1.22,1.22,1.19, (270,273,276,256,271,

15◦N - 49◦N 1.38,1.5,1.33,1.37,1.16) 253,266,264,272,272)

South America 90◦W - 30◦W (1.26,1.25,1.08,1.57,1.25, (75,73,73,304,71,

49◦S - 15◦N 3.35,1.2,1.4,1.51,1.01) 59,328,91,84,340)

Europe 15◦W - 50◦E (1.62,1.51,1.12,0.45,1.47, (321,336,310,298,339,

30◦N - 49◦N 0.77,1.21,1.27,1.69,1.02) 321,328,331,344,330)

Africa 20◦W - 50◦E (0.67,0.57,0.56,0.88,0.6, (92,87,96,93,88,

35◦S - 30◦N 0.79,0.77,0.88,0.61,0.74) 228,87,93,92,89)

Asia 50◦E - 150◦E (4.09,3.78,3.54,3.8,3.87, (204,203,206,196,202,

5◦N - 49◦N 2.99,5.12,4.99,4.39,3.38) 202,204,207,203,207)

Maritime Continent 90◦E - 165◦E (3.19,3,3.13,4.56,3.03, (364,4,365,18,5,

10◦S - 5◦N 4.39,4.43,5.15,3.64,3.21) 354,363,366,19,2)

Australia 110◦E - 155◦E (3.05,2.84,2.89,4.02,2.88, (42,43,41,34,43,

49◦S - 10◦S 3.06,3.52,3.46,2.41,2.04) 41,40,42,43,46)
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TABLE 4. Correlations between GPCP1DD and all other data sets for annual, monthly and daily mean time

series. Correlations are computed for common time period 2001-2012 (2001-2010 for CFSR) with the annual

cycle removed. The annual cycle is defined as the first 4 harmonics of the mean daily seasonal cycle. Correlations

significant at the 90% level are bold.

856

857

858

859

GAUGE+RT TRMM3B42 CMORPHCRTv1.0 PERSIANN PERSICDRv1r1 JRA55 MERRA2 MERRA CFSR ERAI

Annual

North America 0.82 0.97 0.49 0.17 0.99 0.46 0.81 0.83 0.56 0.56

South America 0.25 0.99 0.31 -0.19 1.00 0.66 0.49 0.57 0.44 0.71

Europe 0.81 0.97 0.34 -0.01 0.99 0.92 0.85 0.95 0.79 0.88

Africa 0.56 0.98 0.26 0.69 1.00 0.60 0.22 0.74 0.29 0.55

Asia 0.77 0.95 0.76 0.06 0.99 0.75 0.75 0.46 0.48 0.61

maritime continent 0.94 0.99 0.98 0.14 1.00 0.94 0.14 0.80 0.97 0.91

Australia 0.98 1.00 0.98 0.85 1.00 0.95 0.97 0.95 0.95 0.98

Monthly

North America 0.55 0.92 0.36 0.38 0.98 0.84 0.52 0.87 0.84 0.83

South America 0.25 0.96 0.26 0.20 0.98 0.75 0.29 0.66 0.50 0.70

Europe 0.71 0.95 0.47 0.27 0.99 0.95 0.60 0.95 0.95 0.94

Africa 0.73 0.98 0.39 0.44 1.00 0.67 0.58 0.67 0.67 0.67

Asia 0.88 0.98 0.83 0.29 1.00 0.90 0.86 0.82 0.82 0.89

maritime continent 0.92 0.98 0.94 0.52 1.00 0.87 0.61 0.86 0.92 0.84

Australia 0.99 1.00 0.97 0.78 1.00 0.96 0.97 0.96 0.96 0.98

Daily

North America 0.28 0.75 0.62 0.03 0.91 0.71 0.57 0.60 0.68 0.65

South America 0.23 0.83 0.70 -0.01 0.91 0.71 0.57 0.65 0.63 0.64

Europe 0.48 0.78 0.60 0.02 0.90 0.67 0.55 0.64 0.66 0.64

Africa 0.31 0.87 0.71 -0.02 0.96 0.72 0.63 0.61 0.52 0.63

Asia 0.34 0.86 0.84 -0.06 0.96 0.81 0.79 0.69 0.77 0.75

maritime continent 0.40 0.92 0.91 -0.03 0.99 0.81 0.80 0.76 0.81 0.76

Australia 0.65 0.90 0.89 -0.00 0.97 0.85 0.86 0.80 0.82 0.82
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Fig. 1. Annual cycle amplitude in mm d−1 for the 10 datasets at 1◦ daily resolution for 2001−2012.861

The annual cycle is computed as the first 4 harmonics of the mean daily seasonal cycle. The862

amplitude is half of the difference between the minimum and maximum of the annual cycle. . 45863

Fig. 2. Annual cycle phase in day of year for the 10 datasets at 1◦ daily resolution for 2001−2012.864

The annual cycle is computed as the first 4 harmonics of the mean daily seasonal cycle. The865

phase is the day of the year the maximum of the annual cycle is achieved. . . . . . . 46866

Fig. 3. Mean annual cycle for the 10 datasets at 1◦ daily resolution for 2001−2012 averaged over867

the continental regions. The annual cycle is computed as the first 4 harmonics of the mean868

daily seasonal cycle at each grid point and then averaged over the continental regions. Re-869

analyses are shown as dashed curves and observations with solid lines. Note that the y axis870

limits are different for all regions and that the lower limit is not always zero. . . . . . . 47871

Fig. 4. Monthly long term means of precipitation for July. a) mean for GPCP1DD. b)-f) the differ-872

ence between GPCP1DD mean and the respective data set mean for the period is indicated in873

shading, contours show the mean monthly precipitation for the respective data set. Contour874

levels go from 0 to 0.4 by 0.1mm h−1. All data sets are at 1◦ daily resolution. . . . . . 48875

Fig. 5. Same as in Fig. 4, but for January. . . . . . . . . . . . . . . . . . 49876

Fig. 6. Monthly long term means of precipitation and percentage difference for July. a) mean for877

GPCP1DD. b)-f) the percentage difference between GPCP1DD mean and the respective data878

set mean for the period is indicated in shading, contours show the mean monthly precipi-879

tation for the respective data set. Contour levels as in Fig. 4. All data sets are at 1◦ daily880

resolution. . . . . . . . . . . . . . . . . . . . . . . . 50881

Fig. 7. Monthly mean variance of precipitation for July. a) mean variance for GPCP1DD. b)-f) the882

difference between the GPCP1DD mean variance and the respective data set mean variance883

for the period is indicated in shading, contours show the mean monthly precipitation variance884

for the respective data set. Contour levels are (0.001,0.002,0.005,0.01,0.1,1,2,10). All885

data sets are at 1◦ daily resolution. . . . . . . . . . . . . . . . . . 51886

Fig. 8. Same as in Fig. 7, but for January. . . . . . . . . . . . . . . . . . 52887

Fig. 9. Time series of rain rates averaged over global land area between 49◦N and 49◦S for a) annual888

means, b) monthly means of observational estimates, and c) monthly means of reanalyses.889

Panel c) includes GPCP1DD as a reference for comparison with panel b). Reanalyses are890

shown as dashed curves and observations with solid lines. . . . . . . . . . . . 53891

Fig. 10. Time series of rain rates averaged over North America land area between 15− 49◦N for a)892

annual means, b) monthly means, and c) weekly means. Reanalyses are shown as dashed893

curves and observations with solid lines. . . . . . . . . . . . . . . . 54894

Fig. 11. Percentage distribution of precipitation rate over land area for North America (15◦N - 49◦N,895

195◦E - 310◦E). Panels a)-d) show the climatological distribution for all seasons for 2001 -896

2012. Precipitation rates are binned with logarithmic bin sizes to account for more frequent897

rain events at low rain rates. The x axis is plotted on a log-scale and the y axis on a linear898

scale to compare the bulk of the distribution, not the tails. The black line shows the size of899

the bin at each precipitation rate. Distributions are computed for each month and grid point900
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separately and then averaged over area and season. Reanalyses are shown as dashed curves901

and observations with solid lines. All data sets are at 1◦ daily resolution. . . . . . . . 55902

Fig. 12. Percentage distribution of precipitation rate over land area for North America (15◦N - 49◦N,903

195◦E - 310◦E). As in Fig. 11, except that the x axis is plotted on a linear scale and the904

y axis on a log scale to facilitate comparison of the tails of the distributions. Reanalyses905

are shown as dashed curves and observations with solid lines. All data sets are at 1◦ daily906

resolution. . . . . . . . . . . . . . . . . . . . . . . . 56907

Fig. 13. Distribution of precipitation amount by precipitation rate over land area for North America908

(15◦N - 49◦N, the same area as is used in Fig. 10). Panels a)-d) show the precipitation909

amount distribution for all seasons for 2001 - 2012. The average is computed over the910

years 2001 - 2012. Insets show average monthly totals during each season for the different911

estimates. Reanalyses are shown as dashed curves and observations with solid lines. All912

data sets are at 1◦ daily resolution. . . . . . . . . . . . . . . . . . 57913

Fig. 14. Spread among precipitation estimates at 1◦ daily resolution (computed as the mean standard914

deviation among data sets) for 2001-2010. Top panel: spread among precipitation data sets915

(including reanalyses). Bottom panel: difference in spread among observational precipita-916

tion data sets and spread among reanalyses. The mean seasonal cycle is removed from daily917

data prior to computing the spread. . . . . . . . . . . . . . . . . . 58918
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FIG. 1. Annual cycle amplitude in mm d−1 for the 10 datasets at 1◦ daily resolution for 2001− 2012. The

annual cycle is computed as the first 4 harmonics of the mean daily seasonal cycle. The amplitude is half of the

difference between the minimum and maximum of the annual cycle.
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FIG. 2. Annual cycle phase in day of year for the 10 datasets at 1◦ daily resolution for 2001− 2012. The

annual cycle is computed as the first 4 harmonics of the mean daily seasonal cycle. The phase is the day of the

year the maximum of the annual cycle is achieved.
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FIG. 3. Mean annual cycle for the 10 datasets at 1◦ daily resolution for 2001− 2012 averaged over the

continental regions. The annual cycle is computed as the first 4 harmonics of the mean daily seasonal cycle

at each grid point and then averaged over the continental regions. Reanalyses are shown as dashed curves and

observations with solid lines. Note that the y axis limits are different for all regions and that the lower limit is

not always zero.
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FIG. 4. Monthly long term means of precipitation for July. a) mean for GPCP1DD. b)-f) the difference

between GPCP1DD mean and the respective data set mean for the period is indicated in shading, contours show

the mean monthly precipitation for the respective data set. Contour levels go from 0 to 0.4 by 0.1mm h−1. All

data sets are at 1◦ daily resolution.
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FIG. 5. Same as in Fig. 4, but for January.
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FIG. 6. Monthly long term means of precipitation and percentage difference for July. a) mean for GPCP1DD.

b)-f) the percentage difference between GPCP1DD mean and the respective data set mean for the period is

indicated in shading, contours show the mean monthly precipitation for the respective data set. Contour levels

as in Fig. 4. All data sets are at 1◦ daily resolution.
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FIG. 7. Monthly mean variance of precipitation for July. a) mean variance for GPCP1DD. b)-f) the difference

between the GPCP1DD mean variance and the respective data set mean variance for the period is indicated in

shading, contours show the mean monthly precipitation variance for the respective data set. Contour levels are

(0.001,0.002,0.005,0.01,0.1,1,2,10). All data sets are at 1◦ daily resolution.
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FIG. 8. Same as in Fig. 7, but for January.
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FIG. 9. Time series of rain rates averaged over global land area between 49◦N and 49◦S for a) annual means,

b) monthly means of observational estimates, and c) monthly means of reanalyses. Panel c) includes GPCP1DD

as a reference for comparison with panel b). Reanalyses are shown as dashed curves and observations with solid

lines.
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FIG. 10. Time series of rain rates averaged over North America land area between 15− 49◦N for a) annual

means, b) monthly means, and c) weekly means. Reanalyses are shown as dashed curves and observations with

solid lines.
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FIG. 11. Percentage distribution of precipitation rate over land area for North America (15◦N - 49◦N, 195◦E -

310◦E). Panels a)-d) show the climatological distribution for all seasons for 2001 - 2012. Precipitation rates are

binned with logarithmic bin sizes to account for more frequent rain events at low rain rates. The x axis is plotted

on a log-scale and the y axis on a linear scale to compare the bulk of the distribution, not the tails. The black line

shows the size of the bin at each precipitation rate. Distributions are computed for each month and grid point

separately and then averaged over area and season. Reanalyses are shown as dashed curves and observations

with solid lines. All data sets are at 1◦ daily resolution.
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FIG. 12. Percentage distribution of precipitation rate over land area for North America (15◦N - 49◦N, 195◦E -

310◦E). As in Fig. 11, except that the x axis is plotted on a linear scale and the y axis on a log scale to facilitate

comparison of the tails of the distributions. Reanalyses are shown as dashed curves and observations with solid

lines. All data sets are at 1◦ daily resolution.
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FIG. 13. Distribution of precipitation amount by precipitation rate over land area for North America (15◦N

- 49◦N, the same area as is used in Fig. 10). Panels a)-d) show the precipitation amount distribution for all

seasons for 2001 - 2012. The average is computed over the years 2001 - 2012. Insets show average monthly

totals during each season for the different estimates. Reanalyses are shown as dashed curves and observations

with solid lines. All data sets are at 1◦ daily resolution.
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FIG. 14. Spread among precipitation estimates at 1◦ daily resolution (computed as the mean standard deviation

among data sets) for 2001-2010. Top panel: spread among precipitation data sets (including reanalyses). Bottom

panel: difference in spread among observational precipitation data sets and spread among reanalyses. The mean

seasonal cycle is removed from daily data prior to computing the spread.
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